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Endocrine-disrupting chemicals (EDCs) are a broad class of molecules present in our environment that
are suspected to cause adverse effects in the endocrine system by interfering with the synthesis,
transport, degradation, or action of endogenous ligands. The characterization of the harmful in-
teraction between environmental compounds and their potential cellular targets and the devel-
opment of robust in vivo, in vitro, and in silico screeningmethods are important for assessment of the
toxic potential of large numbers of chemicals. In this context, computer-aided technologies that will
allow for activity prediction of endocrine disruptors and environmental risk assessments are being
developed. These technologies must be able to cope with diverse data and connect chemistry at the
atomic level with the biological activity at the cellular, organ, and organism levels. Quantitative
structure–activity relationship methods became popular for toxicity issues. They correlate the
chemical structure of compounds with biological activity through a number of molecular descriptors
(e.g., molecular weight and parameters to account for hydrophobicity, topology, or electronic
properties). Chemical structure analysis is a first step; however, modeling intermolecular interactions
and cellular behavior will also be essential. The increasing number of three-dimensional crystal
structures of EDCs’ targets has provided awealth of structural information that can be used to predict
their interactions with EDCs using docking and scoring procedures. In the present review, we have
described the various computer-assisted approaches that use ligands and targets properties to predict
endocrine disruptor activities. (Endocrinology 160: 2709–2716, 2019)

During the past decades, a large number of obser-
vations have shown that many exogenous sub-

stances can interfere with hormone levels or hormone
action and, in turn, induce toxic effects. This has led to
the identification of endocrine disrupting chemicals
(EDCs) as a new class of toxic agents that will not be
recognized, at first, by their chemical structure or by a
specific type of usage but, rather, by their mechanisms of
action (1–3). EDCs are exogenous substances that in-
terfere with the function of hormonal systems and
produce a range of developmental, reproductive, neu-
rologic, immune, or metabolic diseases in humans and
wildlife (4). Most EDCs are man-made chemicals pro-
duced by industry and released into the environment.
However, some naturally occurring EDCs can also be

found in plants or fungi. Exposure to EDCs occurs
through ingesting food, drinking water, breathing con-
taminated air, or skin contact. The group of molecules
acting as EDCs is highly heterogeneous and includes
compounds that are often distantly related to endoge-
nous ligands in terms of size or chemical structure. This
group contains substances such as plasticizers (e.g.,
bisphenols, phthalates), preservatives (e.g., parabens),
the byproducts of various industrial processes (e.g., di-
oxins), surfactants (e.g., alkylphenols, perfluoroalkyls),
biocides (e.g., organotins), flame retardants (e.g., halo-
genated bisphenols), and ultraviolet filters (e.g., ben-
zophenones) and natural compounds such as the
phytoestrogens genistein and daidzein or the mycoes-
trogen zearalenone.
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EDCs can affect the endocrine systems of an organism
in a wide variety of ways, for example, by mimicking
natural hormones, antagonizing their action, or modi-
fying their synthesis, metabolism, and transport through
their interference with multiple cellular targets. These
include membrane and nuclear receptors, the aryl hy-
drocarbon receptor, the enzymatic machineries involved
in hormone biosynthesis and metabolism, and various
carriers. Within the chemical regulations, criteria to
identify EDCs have been recently proposed, which re-
quire information on a chemical’s endocrine mode of
action and related adverse effects relevant for human
health. This involves the screening and testing of EDCs
and mainly incorporates internationally accepted test
methods developed under the Organization for Eco-
nomic Cooperation and Development. In this context,
the development of accurate in silico testing strategies
could help to elucidate or confirm the suspected mode of
actions and might suggest associated adverse effects by
predicting the repertoire of molecular targets of EDCs. It
might also provide guidelines to select or optimize
molecule usage or designed to prevent unwanted
activities.

Approaches to predict toxicity or activity against a
particular target for a putative EDC can be divided
according to the nature of data they are using and by their
demand in computational resources. One of the simplest
tools is ADME (Absorption, Distribution, Metabolism,
Excretion)-Tox filters often used by pharmaceutical
companies. Those can be based on composition rules (5),
for example, specific chemical groups that should be
avoided because they have shown adverse effects in the
past (6). Another method of investigating the problem is
drug-induced metabolic perturbation studies. These are
based on metabolic network modeling using large-scale
“omics” data, metabolic stability estimations, and mode
of action analyses (7–10). Some of them have been shared
with usual ADME-Tox issues such metabolization by
cytochromes P450. The general methods for in silico
toxicity prediction have been previously reviewed (7,
11–13). EDCs fall into particular niches of the available
chemical space optimized for other properties and only
partially mimicking natural hormones. They often differ
in chemical structure from most medicinal and endoge-
nous compounds and are encountered at unexpectedly
high concentrations in the environment and living or-
ganisms [e.g., bisphenol A (BPA), organotins]. Therefore,
dedicated approaches are needed to detect the endocrine
disruption potential.

The focus of the present review was centered on the
field of prediction methods that aim to qualify the in-
teraction between given small molecules, as potential
EDCs, and a focused set of macromolecular targets. This

is a very large field of research with many different
methods that have been developed. Each method has its
strengths, limitations, scope of application, and speci-
ficity of interpretation. The first questions to be asked
upfront include the following: How much data are
available? What is the nature of this data? How fast are
results required? What is the minimal required accuracy
of the prediction? What resources are available? Having
those questions in mind, the goal is to find the most
effective method. In addition to the classification into
high-, medium-, and low-throughput methods, the
available approaches can be classified further according
to the type of data used. Most often, chemoinformatics
methods will be classified as ligand-based and target
structure-based approaches (Fig. 1) (14). Depending on
the amount of data and the need for screening large data
sets, the corresponding method should be chosen. This
clearly involves a tradeoff between the amount of mol-
ecules, speed, and accuracy. However, combinations of
techniques are emerging to improve overall efficiency and
applicability. We first surveyed ligand-based virtual
screening techniques as quick filters and then the role of
structure-based virtual screening and discussed their
potential combination. In both cases, one must ade-
quately describe the studiedmolecules, which will usually
start by extracting or writing its chemical formula as a
linear string of atoms, such as SMILES (simplified
molecular-input line-entry system) (Fig. 2), to be sub-
sequently transformed into various other representations
[two-dimensional (2D), three-dimensional (3D)] either
for comparison with other molecules (i.e., similarity
searches, properties comparisons) in ligand-based virtual
screening or by docking into putative targets (i.e., in
structure-based virtual screening).

Ligand-Based Methods

The so-called quantitative structure activity relationship
(QSAR)/quantitative structure property relationship
prediction models have been developed to predict a
particular activity or property of the molecule in ques-
tion. The simplest approaches have been based on the
calculation of molecular descriptors that consider the
molecule as a whole entity and calculate one value for
the whole molecule (e.g., molecular weight). The least
expensive in terms of computational cost are models
based on binary representations of molecules, called
molecular fingerprints, or molecular descriptors (Fig. 2).
These fingerprint representations can be binary in nature
(property present or absent, yes or no, or 1 or 0), which
only reflects the presence (or not) of a given feature or a
count representation (sum of the instances for each
feature). Millions of compounds can be screened within a
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reasonable period. Different types of fingerprints repre-
sent different properties of molecules, and it is, therefore,
crucial to select an adequate type for modeling the desired
activity. Many different types of molecular descriptors
are available and might already be an output of a
property prediction. Molecular descriptors and chemical
fingerprints can be classified according to their di-
mensionality (Fig. 2). One-dimensional descriptors are
scalars that describe the molecule according to its
chemical formula (e.g., molecular weight, atom counts,
or bond counts). Two-dimensional descriptors are based
on the structural topology, such as fragment counts or
functional group counts (e.g., alcohol function or aro-
matic ring). Three-dimensional descriptors extract in-
formation from 3D coordinate representations and are,
therefore, based on the molecule’s geometry. Four-
dimensional descriptors are an extension of the 3D de-
scriptors, which consider multiple conformations. In
the case of 3D and four-dimensional descriptors, the

computational effort will have already increased sub-
stantially and the borders toward the so-called structure-
based methods will tend to vanish. All these descriptors
allow for a rather rapid similarity search and classifi-
cation to deduce or predict functional properties. Various
in silico QSAR tools and, even, servers, namely the
Organization for Economic Cooperation and Develop-
ment QSAR toolbox (https://qsartoolbox.org/), VEGA
HUB (https://www.vegahub.eu/), or CAESAR (http://
www.caesar-project.eu/), to cite a few, are available,
and open challenges have now been implemented to
evaluate them more fairly, such as the Tox21 (“toxicity
testing in the twenty-first century” initiative) project.
DeepTox, the winner of the “Tox21 Data Challenge
2014” obtained excellent performances with a deep
multitask neural network using ECFP4 fingerprint fea-
tures (15).

In general, ligand-based methods will be very re-
stricted to the chemical space of the molecules used for

Figure 1. Affinity prediction methods grouped by ligand-based and structure-based methods and ranked by accuracy, computational effort and
speed, and number of molecules that can be used. 1D, one-dimensional; 4D, four-dimensional.

Figure 2. Molecular representations used by different methods, which were classified by the overall methodology (ligand-based virtual screening and
structure-based virtual screening) and according to the dimensionality [one-dimensional (1D), 2D, 3D, four-dimensional (4D)] of the variables used.
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method development, especially if only a limited amount
of data are available for model training. This can cause
disappointing performances, especially in projections or
extrapolation to new and dissimilar compounds (16).
Therefore, the definition and declaration of an applica-
bility domain—a region in the chemical space for which a
QSAR model should make predictions with a given
reliability—is considered as a necessary good practice for
those model types (17). The quality of experimental data
is also essential for valuable modeling as recently illus-
trated on the estrogen receptors (ERa, ERb), which are
two of the most extensively studied targets with respect to
endocrine disrupting effects (18, 19). Regulation rules
have been devised by the US Food and Drug Adminis-
tration that require the assessment of estrogenic activity,
and effort have been made to predict for ER binding (20,
21), including a large collaborative project (22). The
latter, which compared numerous models and data sets,
showed that poorly evaluated data sets are of little help
for improving prediction quality despite providing ex-
perimental data for thousands of ligands. Similarly, other
steroid hormone receptors, such as the androgen re-
ceptor, have been targeted for model development
(23–26). To evaluate the risk of being EDCs, the pre-
diction of a specific mechanism such as binding to a
particular receptor is preferred for its expected greater
accuracy and low cost. General models that aim at
predictions on large protein families are less common.
EDCs are active against specific targets of diverse nature
(enzymes such as cytochromes P450 or DNA-binding
proteins such as nuclear receptors). Accordingly, dedi-
cated models might be required in agreement with their
experimental characterization.

Structure-Based Methods

The increasing knowledge of functional and structural
data has allowed for the evaluation or prediction of the
potential interactions of known or putative EDCs to
various targets using docking or more demanding ap-
proaches [e.g., molecular dynamics (MD); see the next
paragraph]. Structure-based methods, also called target-
based methods, use information from a protein target 3D
structure and are spanning a large scale in terms of
computational cost. Docking procedures are the most
widely used in virtual screening campaigns and can
manage to thousands of ligands. They are based on
sampling the conformational space of a given ligand in
the binding pocket of a target molecule and a subsequent
pose evaluation performed by scoring functions. Al-
though the sampling of many widely used algorithms has
seemed to be sufficient to find accurate poses (defined
by reproducing crystallographic poses), the scoring

functions still seem to suffer from diverse approximations
(27–29). Accordingly, docking, followed by various
rescoring procedures, is now commonly used to screen
large molecular data sets in drug discovery (27, 29). This
has been applied for endocrine disruption prediction on
the androgen receptor (24, 25, 30) and other nuclear
receptors (31–33). Automatic docking to 16 putative
targets of EDCs or 14 distinct nuclear receptors has been
made user-friendly through two servers, the Open-
VirualToxLab (34) and Endocrine Disruptome (35).
However, structure analysis has also revealed the im-
portance of protein flexibility. Adequately modeling
target flexibility is a major limitation that has been
addressed using structure ensembles, instead of single
conformations (36). One approach is to use multiple
experimental conformations in parallel for docking and
gather the results to extract the best or more likely poses.
A derivative of our server for comparative modeling
“@TOME” (37) now includes a docker (to be described
in more detail elsewhere). This allows for the selection of
the protein conformation best suitable to accommodate
a given ligand. This dedicated server called EDMon
(Endocrine Disruptor Monitoring; available at: http://
edmon.cbs.cnrs.fr/) is now available to screen for ERa,
ERb, and peroxisome proliferator–activated receptor-g
(PPARg). It predicts for affinities using a rescoring ap-
proach based on machine learning (38). However, the
problem is still severe for promiscuous proteins, such as
the nuclear receptors CAR (constitutive androstane re-
ceptor) and PXR (pregnane X receptor) (39). The dozen
of structures described to date for these receptors have
shown dramatic structural rearrangements on ligand
binding, and more experimental 3D structures are nec-
essary to reach a better description of the conformational
landscape they could access.

Alternatively, to unravel or model intrinsic protein
flexibility and possible ligand-induced fit, MD simula-
tions can be used but at a significantly greater compu-
tational cost (e.g., one to several weeks using a standard
workstation). MD-based prediction methods require
more effort with respect to system setup and analysis, and
they are usually not provided as simple “plug and play”
modules, such as is the case for many commercial or
noncommercial docking tools. To date, MD simulations
have already been used to study the structural flexibility
and the dynamics of binding events of several nuclear
receptors (40–45), with and without further investigation
of small molecule-binding affinities. The server Open-
VirualToxLab (34) provides easy access to focused MD,
which is used to refine and evaluate theoretical com-
plexes deduced from docking into 16 EDC targets. In
general, MD-based affinity estimation protocols can be
divided into two major groups: endpoint methods and

2712 Schneider et al Prediction Methods for Endocrine Disruptors Endocrinology, November 2019, 160(11):2709–2716

D
ow

nloaded from
 https://academ

ic.oup.com
/endo/article-abstract/160/11/2709/5526762 by U

niversity Library U
trecht user on 15 M

ay 2020

http://edmon.cbs.cnrs.fr/
http://edmon.cbs.cnrs.fr/


free energy pathway methods. The endpoint methods, as
already indicated by the name, consider the two “end”
states of the system: the bound and the unbound mole-
cules. Two commonly used ones include the MM-PBSA
(molecular mechanics Poisson-Boltzmann surface area)
(46, 47) and MM-GBSA (molecular mechanics gen-
eralized born surface area) (47–49). These computa-
tions can be adjusted to a particular system through
parametrization within the so-called linear interaction
energy method (24, 50–52). For example, MD simula-
tions, followed by MM-PBSA calculations, have been
used to study the structural effects and interaction
mechanism of BPA with three human nuclear receptors,
ERa, ERRg (estrogen-related receptor-g), and PPARg
(53) or to determine the binding of bisphenols BPA,
bisphenol AF, and bisphenol S to ERa (54). These
computations require some expertise but can be per-
formed using a personal workstation and are now often
applied on several dozens of compounds against a given
target. They allow for rescoring of docking poses using
physics-based approaches; however, their usefulness has
continued to be debated. Furthermore, the standard MD
techniques can suffer from an insufficient sampling of the
conformational space of the target molecule. This can
occur for different reasons, such as large conformational
movements during binding, slow transitions between
states, rare events, or high-energy barriers that must be
overcome. In such cases, a set of different computational
methods has been proposed—the free energy pathway
methods such as transition path sampling, umbrella
sampling, steered-MD, and funnel-metadynamics (55–59).
Among the free energy pathway methods is a subgroup
of alchemical methods represented by the thermal in-
tegration (60, 61) and free energy perturbation (62, 63)
methods. Recently, a combination of methods has been
applied to toxicity studies for the identification of
possible ligand binding modes to PPARg (64). How-
ever, those approaches are even more demanding in
central processing unit time and are not commonly
performed for toxicity predictions.

Finally, extremely precise energy estimations can be
computed using quantum mechanics (QM) but at huge
computational cost. Thus, QM is often restricted to
modeling of the binding site. Mixed/hybrid approaches
will allow for computation locally of a QM procedure,
and a standard MD approach is applied to the rest of the
molecular system under study. Quantum effects might be
required to correctly estimate particular molecular in-
teractions when atomic bonds are broken or reformed
during the binding event or for predicting the reaction
rates in drug metabolism, which is the case for cyto-
chromes P450 (65–67). Free-energy estimation and QM
have been performed on a very limited number of

complexes. However, their exquisite characterization of
molecular structures and interactions might help to
precisely define various chemical properties (i.e., con-
formation, charge, reactivity) and/or to parametrize
quicker methods (e.g., for scoring or docking).

Current Limitations and Future Directions

Because the US ToxCast program and the European
Union’s Registration, Evaluation, Authorization, and
Restriction of Chemicals regulation aim to assess the
toxicity of more than 100,000 synthetic chemicals, a
strong demand exists for alternative test methods and, in
particular, such computational tools that will allow for
the reduction of the cost of the evaluation and in animal
lives. Despite recent major advances in the field of affinity
prediction resulting in numerous tools and diverse ap-
proaches, one must remember their limitations. One of
the major concerns of ligand-based in silico prediction
methods is its high dependency on experimental data.
The presence of inconsistent and erroneous data during
the training process can lead to biased and inaccurate
predictions and the applicability domain is a major
prerequisite that needs to fit for reliable predictions.
Large-scale high-throughput experimental testing to
generate coherent databases and curation of the existing
ones would help generate more accurate prediction
models. The QSAR approaches available usually display
applicability domain centered on the training data and
struggle to yield reasonable predictions for highly un-
balanced data sets. The current development and com-
bination of novel statistical and machine/deep learning
approaches are likely to generate novel in silico models
that could manage highly unbalanced data sets, allowing
for the applicability domain to expand beyond the
training data.

Concerning target-based methods, its dependency is
more reduced. However, the issue of potentially un-
known structural changes still exists. An inherent limi-
tation of any modeling tool is its parametrization for all
possible chemistries. Currently, knowledge is lacking
regarding the proper evaluation of protein–ligand in-
teractions involving halogen atoms, metals (e.g., orga-
notins), or newly used entities such as organoborans. In
addition, such compounds have been previously dem-
onstrated to act as EDCs. More crystal structures would
be necessary to reflect the conformational landscape of
the target receptors in a more comprehensive manner and
help in training docking tools with exotic atoms. This
suggests the need for tighter interactions between
structuralists and predictors to tune experimental works
to fill in the gaps in structural and/or functional data.
Another difficulty not easily manageable, especially for
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large chemical data sets, is the possibility for simulta-
neous binding of two or more cases of the same molecule
(especially for small compounds) and/or of distinct
molecules (mixtures) in a cooperative and/or allosteric
fashion. Developing dedicated tools will be necessary to
manage this task correctly to predict potential “cocktail
effects” (68). For different protein targets (16 listed to
date for EDCs), different techniques are already available
and have been applied with varying rates of success. Not
only for nuclear receptors or cytochromes P450, but also
for ion channels such as the hERG (human ether-a-go-
go-related gene) potassium channel, different methods
from ligand-based and target-based to systems biology
have been applied (69).

Finally, cascading prediction tools and filters will be
necessary to (i) account for potential metabolization that
creates unexpected or new chemical entities with new
properties, (ii) detect nonclassic properties [e.g., covalent
attachment (70), multiple binding], (iii) combine QSAR
and docking, or (iv) start to predefine structural en-
sembles for quicker estimation of receptor flexibility to
derive more accurate predictions. The latter might help in
accessing better description of flexible complexes and
avoid the burden of long simulations. Next, one could
dream of combining those studies with mathematical
models at the cellular level and in the endocrine system.
Hence, room exists for further improvements in which a
fruitful interplay between modeling and experimental
characterization should be promoted.

Acknowledgments

Financial Support: The present project received funding from
the European Union’s Horizon 2020 research and innovation
programme (Grant Agreement, GOLIATHNo. 825489 to W.B.),
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