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ABSTRACT: Receptor-mediated molecular initiating events
(MIEs) and their relevance in endocrine activity (EA) have been
highlighted in literature. More than 15 receptors have been
associated with neurodevelopmental adversity and metabolic
disruption. MIEs describe chemical interactions with defined
biological outcomes, a relationship that could be described with
quantitative structure−activity relationship (QSAR) models.
QSAR uncertainty can be assessed using the conformal prediction
(CP) framework, which provides similarity (i.e., nonconformity)
scores relative to the defined classes per prediction. CP calibration
can indirectly mitigate data imbalance during model development,
and the nonconformity scores serve as intrinsic measures of
chemical applicability domain assessment during screening. The focus of this work was to propose an in silico predictive strategy for
EA. First, 23 QSAR models for MIEs associated with EA were developed using high-throughput data for 14 receptors. To handle the
data imbalance, five protocols were compared, and CP provided the most balanced class definition. Second, the developed QSAR
models were applied to a large data set (∼55,000 chemicals), comprising chemicals representative of potential risk for human
exposure. Using CP, it was possible to assess the uncertainty of the screening results and identify model strengths and out of domain
chemicals. Last, two clustering methods, t-distributed stochastic neighbor embedding and Tanimoto similarity, were used to identify
compounds with potential EA using known endocrine disruptors as reference. The cluster overlap between methods produced 23
chemicals with suspected or demonstrated EA potential. The presented models could be utilized for first-tier screening and
identification of compounds with potential biological activity across the studied MIEs.

1. INTRODUCTION
Chemicals with endocrine disruptive (ED) properties have
been associated with a multitude of effects, such as
neurodevelopmental interference in early life (e.g., birth
weight, behavioral development1) or contributing to metabolic
disorder development.2 Endocrine disrupting chemicals
(EDCs) have been shown to interfere with hormonally
regulated processes directly through binding to target receptors
or indirectly by interacting with components of the endocrine
pathways.3 The exact mechanistic pathways leading to ED
events are yet to be elucidated; however, an OECD conceptual
framework for testing and assessment of endocrine disrupters
has been proposed.4 Within this framework, molecular
initiating events (MIEs) related to estrogen receptor (ER)
isoforms, androgen receptor (AR), thyroperoxidase inhibition/
transthyretin binding, and retinoid X receptor (RXR) are
proposed as in vitro endpoints to be assessed. The inclusion of
in silico-derived data as Level 1 information is encouraged,4 and
principles to ensure good practice of quantitative structure−
activity relationship (QSAR) model development for regu-
latory purposes have been proposed.5 In the guidance,5 it is

proposed that a QSAR for regulatory purposes should be
associated with: (1) defined endpoint, (2) be based on
unambiguous algorithm, (3) have a defined domain of
applicability, (4) report goodness-of-fit, robustness, and
predictive capacity, and (5) if possible have a mechanistic
interpretation that is described with proposed QSAR.
Currently, QSAR models on endocrine activity (EA) and

MIEs involving ER (e.g., CERAPP),10 AR (e.g., CoMPARA),11

pregnane X receptor (PXR),12−15 and thyroid receptors
(TR)16,17 are readily available. Open-access platforms such as
QSAR toolbox (e.g., ER profiler)18 and VEGA-QSAR19 (e.g.,
ER, TR, RXR) or standalone models from peer-reviewed
literature are easily deployable with adequate supporting
documentation for all implemented models. The implemented
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models have well-defined endpoints and are based on
unambiguous algorithms such as multiple linear regression,
partial least-squares regression, and k-nearest neighbors.
Therefore, to meet the proposed principles on considering in
silico-derived data for regulatory assessment of EDCs,
employed models should be assessed in terms of (a) domain
of applicability (principle 3) and (b) measures of goodness-of-
fit, robustness, and predictive capacity prior to deployment
(principle 4).
The applicability domain of a model is dictated by the data

set it is based on; the more diverse the data set, the wider the
applicability domain of a model. There is restricted availability
of large and chemically diverse data sets on endpoints related
to ED events. For this reason, the majority of current in silico
modeling efforts on EA prediction employ data from the
initiatives Tox21 and ToxCast. Within these initiatives, in vitro
quantitative high-throughput screening (qHTS) data have
been generated for approximately 10,000 compounds.6

Previously, model development limitations have been reported
due to data skewness, discrepancies of reported bioactivity
among replicates, and overlooked cytotoxicity results when
curating receptor activity assay data.7 In turn, successful
curating strategies have been suggested (e.g., Judson et al.8)
and applied (e.g., Gadaleta et al.9).
Principle 3 should be also evaluated in conjuction with

principle 4 when QSARs are considered for regulatory
assessment of EDCs. Principle 4 refers to model performance
during development and validation. To ensure predictions of
high confidence, it is necessary to evaluate whether a chemical
of unknown activity falls within a model’s applicability domain.
To facilitate this evaluation and address prediction uncertainty,
QSAR models should report measures of goodness-of-fit per
prediction. VEGA-QSAR prediction reports disclose whether
chemicals of interest are within the training set and indices to
evaluate applicability.19 However, several QSAR toolbox
profilers do not provide explicit quantifiable confidence
measures per prediction or clear definition of the chemical
applicability domain.
Conformal prediction (CP) is a mathematical framework

that provides measures of uncertainty for predictions derived
from an in silico model.20 Additionally, it has been
demonstrated that CP implementation could improve
imbalance of class definition caused by data set skewness.21,22

It was hypothesized that implementation of CP could improve
the aforementioned limitations on EA prediction. The
objectives of this work were (a) to develop in silico models
for endocrine activity intended for first-tier screening and and
(b) to propose a strategy to identify chemicals with EA
potential using clustering methodologies. To meet objective
(a), 14 receptors were identified to be involved in MIEs
associated with neurodevelopmental and metabolic disrupting
adverse effects by Lupu et al.23 and Legler et al.24 For these
receptors, data sets from Tox21 qHTS bioassays were retrieved
and curated. Twenty-three in silico models were developed
using the Random Forest Classification algorithm. Five
protocols that handle imbalanced data sets, including CP,
were applied and compared to assess the effectiveness of CP
on class definition. Next, all developed QSAR models were
applied to a large data set relevant to human exposure
(∼55,000 chemicals), and predictions with defined uncertainty
measures were derived and discussed. To meet objective (b), it
was hypothesized that application of clustering methodologies
and visualization using bioactivity as criterion of similarity

could produce chemicals of potential EA activity. Predicted
bioactivity profiles of the data set from objective (a) were
compared with bioactivity profiles of two known EDCs using
two clustering methods, t-distributed stochastic neighbor
embedding (t-SNE) and Tanimoto similarity.

2. METHODOLOGY
2.1. Data Sets. Legler et al.24 and Lupu et al.23 discussed

the strong links of MIEs involving aryl hydrocarbon receptor
(AhR), AR, constitutive androstane receptor (CAR), estrogen
receptor alpha (ER-α), farsenoid X receptor (FXR),
glucocorticoid receptor (GR), peroxisome proliferator-acti-
vated receptor gamma (PPAR-γ) and delta (PPAR-δ),
progesterone receptor (PR), PXR, retinoic acid receptor
(RAR), RXR, thyroid hormone receptor (TR), and vitamin
D3 receptor (VDR3) with ED adverse effects. Data sets from
bioassays that identify agonistic and antagonistic activity of
small molecules with proposed receptors were selected (Table
S1). As part of the U.S. Tox21 Program, summaries of bioassay
records were released, which combined results from receptor
activity assays and cell viability counter screens. For the
presented work, the PUBCHEM_ACTIVITY label was used to
indicate an active or inactive compound. For each unique
PubChem CID with multiple results (Active, Inactive, or
Inconclusive), only those with a majority activity (Active,
Inactive) decision ≥2/3 were included. A cutoff of 0.3%
active/inactive ratio was set as the sole exclusion criterion. In
total, 23 assays were included (Table 1) and only 2 were
excluded (i.e., TR agonism and VDR3 agonism) from further
analysis.
Chemicals associated with human exposure (referred as

human exposure risk, HER) had been compiled by Mansouri
et al.11 HER was selected due to its size (n = 55,337
chemicals), and its inclusion of metabolic structures (n =
6592) with predicted estrogenic activity, whose parent
compounds have predicted nonestrogenic activity.11 HER
comprise chemicals from sources such as the European
inventory of existing commercial chemical substances.25 HER
curation has been already described, which included QSAR-
ready SMILES standardization.10,11 To further ensure data
quality, PubChemIDs were randomly selected using the
KNIME node Random Number Assigner to reach 50 and
100 chemicals from the training and HER data set,
respectively. All 150 chemicals were manually checked and
matched successfully with the reported QSAR-ready SMILES.

2.2. Model Development and Performance Assess-
ment. 2.2.1. Model Development Protocol. Using RDKit
descriptors, models were developed following a stratified 5-fold
cross validation protocol, and the Random Forest classification
(RFC) algorithm. RFC was performed using Gini Index and
200 trees.

2.2.2. Handling Data Imbalance. To account for data
imbalance (Table 1), five protocols were tested and
implemented in the RFC protocol: conformal prediction
(CP) equal size sampling (under-sampling), over-sampling by
duplication, by synthetic minority over-sampling technique,
and by random over-sampling examples, and (details on Table
2). A naiv̈e protocol was also performed as control.

2.2.3. Conformal Prediction. CP is a mathematical
framework to quantify confidence of de novo predictions. For
a thorough and detailed description of CP, see previous studies
using the method,28−30 and for an in-depth analysis of the
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mathematical and statistical theorems behind CP see the work
by Vonk et al.31

The CP framework introduces two elements in a model
development protocol: calibration and definition of local levels
of confidence (Figure 1). Using CP, the trained RFC model is
applied to the calibration set, for which activity of the
compounds is known. In the calibration tables, compounds are
ranked based on, in this case, decreasing probabilities by the
model. The calibration tables serve as the ground for setting
local levels of confidence as well as for determining the

respective p-values (one p-value for each class). In a binary
classification model, p-values are assigned for each class classes
(i.e., p-active and p-inactive) that quantify similarity (i.e.,
conformity) within the respective class, e.g., for an active
compound, it would be expected p-active≥ significance level
and p-inactive < significance level. The class balancing effect in
CP is achieved by comparing each class independently as two
separate distributions. As in any other modeling effort,
calibration tables reflect the quality of the training set on
class definition. When deploying the model, predicted
probabilities attributed to new chemicals are ranked within
each calibration table. The rank of the tested compounds
within each of the calibration tables can be translated into
confidence, i.e., the higher the p-value of a new compound
within a class, the higher the similarity assumed with the
corresponding class, the higher the confidence on the
assignment. For class assignment, both p-active and p-inactive
values are used. For compound X with p-active value 0.95 and
p-inactive 0.01, the class assignment would be ‘active’.
There are three potential outcomes for class assignment

(Figure 1): (a) ‘active’ or ‘inactive’ (i.e., single class
assignment), (b) assignment to ‘both’ classes (i.e., for the
defined error rate (significance level), distinction between
classes is not possible), and (c) ‘empty’ (i.e., classification not
possible for the selected local confidence levels, ‘out of domain’
classification). For a more detailed description on how this
calibration is performed, see Norinder et al.28

Definition of local levels of confidence is equally crucial
during the calibration step, because it dictates the final class
assignment. In CP, local levels of confidence are user-defined,
and they are referred to as acceptable error of significance. In a
scenario of 0% acceptable error, if class assignment was ‘both’
for all compounds, it would be considered correct. Hence,
definition of the acceptable error should be informed by two
CP-specific measures, efficiency and validity. Efficiency
represents the ratio of single class predictions per class, and
validity represents the ratio of correctly assigned compounds
per class. For screening, it is optimal both measures both
measures to be above 0.80 (i.e., 80% of the predictions are
correctly assigned, and are assigned to a single class). Here, CP
was performed in 10 iterations (Figure 1), and the calibration
set was randomly sampled for each iteration.

2.3. Model Statistical Analysis. Statistical parameters for
binary classification were calculated for all developed models
(e.g., accuracy, sensitivity, specificity, F-measure, Matthew’s
correlation coefficient (MCC), positive (PPV) and negative
predictive value (NPV), area under the ROC curve (AUC))

Table 1. Active/Inactive Ratios for Receptor Binding
Bioassays Within the U.S. Tox21 Initiative Considered for
Model Developmenta

Target
Receptor

Molecular Initiating
Event Data set

Active/Data set
(%)

AhR activation 6671 10.94
AR agonism 7130 3.00

antagonism 6286 6.28
CAR agonism 6629 11.80

antagonism 5059 2.49
ER-α agonism 7242 4.42

antagonism 6287 4.23
FXR agonism 6812 1.16

antagonism 6114 2.60
GR agonism 7116 2.04

antagonism 6167 4.70
PPAR-δ agonism 6455 1.02

antagonism 6204 0.77
PPAR-γ agonism 6795 2.56

antagonism 5915 4.90
PR agonism 7347 1.46

antagonism 6201 12.01
PXR agonism 6144 24.25
RAR agonism 5916 5.04

antagonism 4919 9.53
RXR agonism 5566 2.61
TR-β antagonism 5554 4.65
VDR3 antagonism 6007 0.78

aAhR: aryl hydrocarbon receptor; AR: androgen receptor; CAR:
constitutive androstane receptor; ER-α: estrogen receptor alpha;
FXR: farsenoid X receptor; GR: glucocorticoid receptor; PPAR-γ:
peroxisome proliferator-activated receptor gamma; PPAR-δ: perox-
isome proliferator-activated receptor delta, PR: progesterone receptor,
PXR: pregnane X receptor, RAR: retinoic acid receptor, RXR: retinoic
acid receptor; TR-β: thyroid hormone receptor; and VDR3: vitamin
D3 receptor.

Table 2. Description of Tested In Silico Protocols

Protocol Implementation and settings Method description

Naiv̈e No class imbalance class handling
Equal size sampling
(under-sampling)

KNIME node equal size
sampling. Set to exact match
of classes

Node removes random rows from majority class to match the size of the minority class.

Duplication − over-
sampling

KNIME Increase of minority class by duplication of real objects.

Synthetic minority over-
sampling technique
(SMOTE)

KNIME node SMOTE. Set to
identify 5 nearest neighbors

From the data set, the algorithm pairs real object with nearest neighbor from same class, selects a
random point between neighbors, and populates synthetic rows with attributes based on this
randomly selected point26

Random over-sampling
examples (ROSE)

R script package. Default
parameters

The algorithm produces synthetic rows to enlarge both the minority and majority class size, with
artificial data derived by a conditional kernel density estimate of the two classes27

Conformal prediction
(CP)

Python (data availability) Mathematical framework for machine learning models, that provides measures of uncertainty (see
more details in Section 2.2.3)
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with the Binary Scorer KNIME node, which accounted for out
of domain and unequivocal class assignment. For models
developed with CP, model performance was assessed on five
levels of significance (i.e., 0.1, 0.15, 0.2, 0.25, 0.3), and
measures of validity and efficiency per class per model were
calculated (Table S3). It should be stressed that model
assessment parameters for CP were calculated for single label
predictions, i.e., active or inactive, only.

2.4. HER Screening and Chemical Similarity Strat-
egies. HER screening following naiv̈e and under-sampling
protocol were performed using KNIME, and following CP
using Python. Analysis of screening and clustering results,
including identification of commonly occurring fragments
(node MoSS), were conducted using KNIME.32 Non-
conformity p-values (i.e., p1, p0) of HER data set were derived
and reported in Table S4.

To assess whether in silico methodologies can support
chemical prioritization, two similarity methods were applied, t-
SNE and Tanimoto similarity. Comparison was based on
predicted nonconformity p-values across all developed models
using as reference, known endocrine disruptors. Bisphenol A
(BPA)33 and bis(2-ethylhexyl) phthalate (DEHP)34 were
selected as reference compounds. These compounds were
selected, because they are industrial organic compounds; they
have documented ED activity relevant to both human and
environmental health; and they are among the first compounds
within EU to be classified as chemical of concern due to their
endocrine disrupting effects35 (Figure 2).
t-SNE is an unsupervised nonlinear probabilistic exploratory

and visualization algorithm, which embeds high-dimensional
data for visualization in a low-dimensional space.36 In brief, the
principle behind t-SNE is calculation and comparison of
probabilities of proximity in higher- and lower-dimensional

Figure 1. Conceptual representation of RFC and CP model development and evaluation. Per fold, 20% was reserved for test set, 60% for training,
and 20% for calibration. In the model development stage (blue background), the trained RFC-model is applied to the calibration set. For the
successfully predicted compounds of the calibration set, RFC derived p-values are collected and ranked in the respective classes (i.e., active domain
calibration table and inactive domain calibration table). During the validation step (red background), the trained RFC-model is applied to the test
set, and RFC derived p-values are compared with the active and inactive domain independently. Based on the relative ranking in the respective
domains, nonconformity scores (i.e., p1 and p0) are calculated. Finally, class assignment is based on the defined acceptable error of significance (ε).

Figure 2. Chemical structures of BPA and DEHP.
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space. This comparison is the premise for visualization, where
the differences are attempted to be minimized in a lower-
dimensional space, using local minima by applying a gradient
descent. A detailed explanation of the method is presented by
van det Maaten and Hinton.37 For the purposes of this work, t-
SNE was performed, following the protocol openTSNE
(version 0.3.11)36 in Python environment (version 3.7) using
conformal p-values as input features for the studied data set.
Tanimoto coefficients are scores that represent similarity

between sets of elements such as fingerprints in binary. For this
comparison, fingerprints in binary (1/0) were constructed
based on conformal p-values (p1, p0) across 23 endpoints. If
p1 > p0, a value 1 was set, and if p1 < p0, a value 0 was set;
values 1 and 0 express the largest p-value and not class
assignment. This generated a 23-bit long (1/0) fingerprint
(e.g., 00110111001100010110111) for each compound. Two
Tanimoto scores were calculated for all HER compounds when
compared with BPA and DEHP, respectively.

3. RESULTS AND DISCUSSION
3.1. In Silico EA-Specific Screening Battery. In the

current study, 23 classification models were developed based
on curated Tox21 data sets of EA-relevant endpoints. Training
skewness was a common feature for all data sets, where the
active domain represented 0.78 to 24.25% (median 4.23) of
the data set (Table 1). Proposed strategies that handle data
imbalance focus on minority class increase (e.g., n-fold over-
sampling, active learning38), majority class reduction (e.g.,
under-sampling), synthesis of artificial data (e.g., SMOTE,26

ROSE27), and/or model structure tailoring (e.g., subsampling
and ensemble QSARs39). CP has been also shown to handle
data skewness in a number of examples (e.g. refs 29 and 40).
In agreement with previous studies,29,40 CP provided the

most balanced performing models compared to other
protocols without compromising model performance (Table
3, for more details see Table S2). It is acknowledged that other
protocols outperform CP in specific aspects of model

Table 3. Overview of Average Performance Parameters on Test Set for Developed Models Using Random Forest
Classification, Following Different Protocols for Handling Data Imbalance

Performance parameters Naive Under-sampling Over-sampling ROSE SMOTE CPa

Balanced Accuracy 0.61 0.78 0.65 0.55 0.66 0.71b 0.82
Accuracy 0.96 0.78 0.96 0.19 0.96 0.69b 0.81
Sensitivity 0.24 0.79 0.31 0.94 0.34 0.73b 0.83
Specificity 0.99 0.77 0.99 0.16 0.98 0.69b 0.81
Balanced PPV 0.98 0.78 0.97 0.54 0.97 0.81
Balanced NPV 0.57 0.79 0.60 0.79 0.61 0.83
MCC 0.38 0.28 0.41 0.07 0.42 0.34
AUC 0.85 0.53 0.18 0.71 0.19 0.88
Coverage 1 1 1 1 1 1 0.89

aAcceptable error level of significance is 0.2 for CP models. bIncluding chemicals that are ‘empty’ or ‘both’.

Table 4. Overview of Performance on Test Set for Developed Models Using Random Forest Classification and Conformal
Predictiona

Conformal Prediction

Target Endpoint Balanced Accuracy Efficiency MCC AUC Coverage

AhR activation 0.87 0.92 0.56 0.93 0.92
AR agonism 0.85 0.94 0.34 0.92 0.94

antagonism 0.85 0.99 0.39 0.97 0.99
CAR agonism 0.86 0.94 0.55 0.96 0.94

antagonism 0.79 0.91 0.22 0.89 0.91
ER-α agonism 0.79 0.92 0.27 0.92 0.92

antagonism 0.82 0.99 0.30 0.97 0.99
FXR agonism 0.85 0.77 0.19 0.82 0.77

antagonism 0.83 0.98 0.26 0.95 0.98
GR agonism 0.80 0.96 0.21 0.91 0.96

antagonism 0.85 0.96 0.36 0.95 0.96
PPAR-δ agonism 0.81 0.80 0.17 0.65 0.80

antagonism 0.63 0.70 0.06 0.80 0.70
PPAR-γ agonism 0.81 0.87 0.23 0.85 0.87

antagonism 0.79 0.95 0.30 0.93 0.95
PR agonism 0.93 0.90 0.69 0.87 0.90

antagonism 0.88 0.95 0.62 0.91 0.95
PXR agonism 0.88 0.95 0.70 0.93 0.95
RAR agonism 0.81 0.97 0.35 0.95 0.97

antagonism 0.80 0.94 0.40 0.95 0.94
RXR agonism 0.74 0.58 0.17 0.60 0.58
TR-β antagonism 0.78 0.97 0.28 0.96 0.97
Vit D3 antagonism 0.86 0.58 0.19 0.78 0.58

a0.2 acceptable error level of significance.

Chemical Research in Toxicology pubs.acs.org/crt Article

https://doi.org/10.1021/acs.chemrestox.2c00267
Chem. Res. Toxicol. 2023, 36, 53−65

57

https://pubs.acs.org/doi/suppl/10.1021/acs.chemrestox.2c00267/suppl_file/tx2c00267_si_001.xlsx
pubs.acs.org/crt?ref=pdf
https://doi.org/10.1021/acs.chemrestox.2c00267?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


performance with respect to one class (e.g., higher accuracy in
individual models when following an over-sampling protocol;
higher MCC score when compared to naiv̈e), but not for both.
Performance parameters, such as balanced accuracy, balanced
PPV, and balanced NPV were on average above 0.8 across all
23 CP models, suggesting a balanced definition for both classes
(see Tables 3 and S2).

Generally, data imbalance is reflected on the skewness of
predictability between classes regardless of tested protocol (i.e.,
mean MCC = 0.32), with high levels of specificity (e.g., over-
sampling: 0.99), and low levels of sensitivity (e.g., naiv̈e: 0.24)
(Table 3). For CP models, training skewness influenced
performance, with expected false positive and false negative
rates to be ∼20% (i.e., balanced PPV and NPV ∼0.8). For CP

Figure 3. HER data set (n = 55337) screening results using 23 in silico CP-models associated with ED-linked MIEs. With CP implementation, user-
defined threshold dictates class assignment, indicative of the acceptable error of significance per prediction. For threshold (A) 0.2 and (B) 0.8, HER
data sets are assigned as active, inactive, or unclassified (i.e., ‘unequivocal’ and ‘empty); note: scales are not proportional for the bars.
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models, the optimum acceptable error signified that correct
classification was derived for more than 80% (validity:0.8) of
the test set, and single class assignment was derived for more
than 80% of the test set (efficiency:0.8).
When comparing model performance, it is important to

reiterate a key distinction of CP class assignment over other
protocols. CP class assignment is based on user-defined levels
of acceptable error (significance level), which defines local
levels of confidence and influence model coverage (Table 3).
This distinction hinders straightforward comparison of model
performance with the other tested protocols, where a single
label classification is the default outcome of the majority vote.
CP performance parameters in Table 3 are reported in
reference to the whole data set (coverage 1) and adjusted to
CP coverage as well (coverage 0.89). CP class assignment
provides transparently model limitations, which are not readily
available for most other protocols and which demand expertise
to attain. Derived average AUC was 0.88, whereas among other
tested protocols, the mean AUC was 0.49 (0.19−0.85). This
example demonstrates the essentiality of transparent intrinsic
measures to assess uncertainty in model evaluation and
prediction.
Among the 23 models developed with CP, 15 demonstrated

high predictability (efficiency and balanced accuracy for both
classes >0.8) and 8 moderate (efficiency and/or balanced
accuracy between 0.6 and 0.8) (Table 4). The best performing
models were for the MIEs AhR activation, CAR agonism, PR
agonism, PR antagonism, and PXR agonism (Tables 4 and S3).

3.2. Deployment of an In Silico EA-Specific Screening
Battery. To evaluate in practice how CP could contribute to a
first-tier screening scenario, all 23 models were applied to the
HER data set. At first glance (Figure 3A), 27% is predicted on

average as active, 62% as inactive, and 11% as unclassified (i.e.,
classified as ‘both’ or ‘empty’) across models.
The highest levels of predicted actives were reported from

the TR-β antagonism model (∼36%) and lowest from the PR
agonism model (∼2%) (Figure 3A). Differences in active class
assignment (%) between training and predicted were expected
(see Section 3.1 and Table S4). At most, 20% of the predicted
active domain was expected to be false positives, accounting for
model parameters such as balanced PPV and set acceptable
error of significance. On average, prediction of active
compounds in HER data set is 10-fold higher than expected,
accounting for balanced PPV and expected false positive rate
this difference falls to 8-fold (Tables S4 and S5). The PXR
agonism and PR agonism models are expected to have the
lowest number of false positives results (i.e., ∼1.2-fold
difference predicted/expected actives), and the highest from
the models on VDR3 antagonism and PPAR-δ antagonism
(i.e., >30-fold). Reasons for these discrepancies could be
attributed to training skewness, receptor promiscuity (e.g.,
AR;11,41 CAR;36 GR37), or bias due to differences between
model data set and HER. However, it is assumed that model
data sets and HER are sufficiently similar, and for the receptors
with documented promiscuity, the fold difference between
expected and predicted active is low.
Interestingly, the highest discrepancies between predicted

and expected actives are derived from models with limited
active domain (i.e., 47−79 compounds) (Tables 1 and S4).
Even though data imbalance was addressed with CP, inherent
limitations of the data set and its active domain could not. It
should be also noted that model performance was not
indicative of this discrepancy, since high false positive rate
was expected for models with adequate performance

Figure 4. BPA (red) and DEHP (blue) t-SNE clusters as compared with t-SNE values of HER data set (gray).
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Table 5. Tanimoto Coefficients for Compounds from the HER Dataset, Using BPA and DEHP as Reference Compound
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parameters as well, e.g., FXR agonism model (Tables 4, S3, and
S4). A false positive class assignment could be considered
prudent and aligned with the precautionary principle; however,
it misses to provide valuable insights to actively inform
prioritization strategies.
CP implementation provides an additional level of

information, because classification is based on quantifiable
measures of similarity with the respective classes (i.e.,
conformal p-values: p1, p0). Class assignment with CP is

dictated by the user-defined acceptable error of significance
(ε), but conformal p-values are not. Therefore, it is possible to
follow different chemical selection strategies and tailor class
definition criteria depending on the purpose of the modeling.
Below it is discussed how to derive high confidence predictions
and ‘out of domain’ chemicals.
Compounds are predicted as active, when p1 is above

assigned acceptable significant error and p0 below that.
Consequently, it is possible to adjust the threshold and
identify compounds predicted with high similarity within a

Table 5. continued

Figure 5. Commonly occurring structural alerts within BPA t-SNE
cluster (frequency levels annotated).

Figure 6. Commonly occurring structural alerts within DEHP t-SNE
cluster (frequency levels annotated).
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class by increasing the ε if, e.g., candidates for costly
experimental testing are to be identified. A stricter class
assignment (i.e., ε > 0.8) shifted the distribution among
classes, a significant decrease of efficiency, and increase of
unclassified compounds (Figure 3B, Table S5). For conformal
p-values > 0.8, 68−2250 (mean: 908, median: 568)
compounds were predicted as active and 874−5963 (mean:
3377, median: 3551) as inactive per model (Table S4). This
strategy reduced drastically the number of expected false
positives and quadrupled the number of compounds suspected
as actives per MIE (Table S4). The clusters of chemicals
predicted as actives (Table S4) could inform prioritization
testing for MIEs, when further information is needed (e.g.,
models with low balanced PPV or high false positive rate,
Table S2), highlight chemical domains of potential concern
(e.g. ref 42), or with therapeutic applications (e.g., ref 43).
Apart from single class assignment, CP classification

outcome can be ‘both’ (i.e., both conformal values above set
ε) and ‘empty’ (i.e., both conformal values below set ε), i.e.,
‘out of domain’ compounds (see ‘unclassified’ in Figure 3).
From the unclassified, it is possible to derive ‘out of domain’
compounds that are not sufficiently similar with the active or
inactive class. Conformal p-values signify similarity, so it is
possible to flag chemicals as ‘out of domain’, if they are not
sufficiently similar with the active or inactive class, using as
similarity measure their conformal p-values. For the presented
screening results, chemicals with p1 and p0 both < 0.2 were
considered ‘out of domain’ (Table S5). A great variation in
ratio of out of domain chemicals was noted among the 23
models. For the more specific MIEs (e.g., PR agonism), a
higher ratio of ‘out of domain’ compounds was found among
unclassified (Table S5). In turn, the ‘both’ classification was
the most prominent within the ‘unclassified’ for models with
poorly defined active domain (e.g., FXR agonism, see above),

and in these models, very few chemicals were flagged as ‘out of
domain’ (Table S5).
As discussed in Section 3.1, measures of uncertainty are very

useful to scrutinize first-tier screening results in a transparent
way. In first-tier screening, it is preferable to have a high rate of
false positives than false negatives, aligned with the precau-
tionary principle. For further hazard assessment, additional
hazard indicators, such as persistence, should be considered.

3.3. Chemical Similarity Strategies. In silico grouping
methodologies could provide a macroscopic overview and map
systematically chemical and biological domains based on
defined similarity criteria. Evidence suggests that EA is not
driven by a single MIE and relying on SARs is not sufficient to
inform prioritization. Thus, it was explored whether in silico
similarity methodologies could support a prioritization strategy
to highlight compounds of emerging concern. Predicted
conformity profiles of the HER data set and reference
compounds were compared using two in silico methods, the
t-SNE method (Figures 4−6), and Tanimoto similarity (Table
5). BPA and DEHP were selected as reference compounds,
because they are industrial chemicals, characterized by ECHA
as EDCs with effects relevant both for human health and the
environmental,44 and with a wealth of evidence on their ED
mode of action.33,34

t-SNE clustering revealed distinct clusters for BPA and
DEHP (Figure 4, Tables S6 and S7). The t-SNE cluster for
BPA comprised 80 chemicals (Table S6) with mean MW 294.5
kDa (median 289.3) and mean SlogP 4.47 (median 4.42).
There was no striking structural homogeneity within the
cluster, apart from all having 2−3 benzene rings (examples of
structural alerts and their frequency levels in Figure 5). The t-
SNE cluster for DEHP comprised 69 phthalates (Table S7)
with mean MW 412 kDa (median 418.6) and mean SlogP 7.19
(median 7.29) (substructure examples with frequency levels in
Figure 6).
Following the CompTox Dashboard default,45 0.8 was set as

cutoff to assess similarity across predicted biological activity of
the previously presented models using Tanimoto coefficients.
For BPA, there were 173 chemicals with Tanimoto coefficients
above 0.8 among 3 had score 1 (see Tables 4 and S7). For
DEHP, there were 4 chemicals with Tanimoto coefficients
above 0.8, of which 3 had an identical predicted activity profile
with DEHP and thus coefficient of 1 (Table 5).
Both methods indicated a number of chemicals with similar

or even identical predicted bioactivity with BPA and DEHP, on
MIEs related to endocrine activity. Interestingly, more than
100 of these chemicals are included in the HBM4EU screening

Figure 7. Examples of compounds identified as BPA-like based on
their predicted bioactivity across 23 MIEs linked to ED.

Figure 8. Compounds identified as DEHP-like based on their predicted bioactivity across 23 MIEs linked to ED.
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list for chemicals of emerging concern (CECs)46 and/or
NORMAN suspect list;47 evidence that supports their
inclusion in EDC suspects lists.
The derived clusters from t-SNE and Tanimoto were

compared per reference compound, and examples of over-
lapping compounds are presented in Figures 7 and 8 (Tables
S6 and S7). More than 90% of the overlapping compounds
were in the HBM4EU screening list for CECs46 and/or
NORMAN suspect list.47 For BPA, comparison of the
clustering outcomes highlighted 19 chemicals that were
found both within the t-SNE cluster and have Tanimoto
coefficients above 0.8, and some examples are presented in
Figure 7. These include Methoxychlor, a compound with
demonstrated endocrine activity,48 and Bisphenol B (BPB), a
compound that has been characterized as chemical of concern
due to its endocrine disrupting properties.49

Comparison of the DEHP clustering results highlighted four
chemicals (Figure 8). All identified compounds are phthalates,
which are used primarily as plasticizers. There are limited
studies on the individual chemicals with respect to their mode
of action; however, there is some evidence on their association
with ED activity (e.g., refs 50 and 51) and further
investigations are urged.

4. CONCLUSIONS
With this work, in silico classification models have been
developed for 23 MIEs that involve 14 receptors associated
with endocrine-induced neurodevelopmental effects and
metabolic disruption. The primary purpose of these models
was to be utilized for first-tier screening, and these models
address limitations due to training set imbalance and enable
control over levels of confidence per prediction. Among the
tested protocols for data imbalance handling, implementation
of the CP framework addressed data imbalance with no
compromise to model performance. The models were applied
to predict activities of chemicals in a large chemical inventory
(ca. 55,000 chemicals). Screening outcomes highlighted the
value of quantifiable measures to assess model limitations. It
was demonstrated that by following proposed strategies, it is
possible to derive chemical domains with high confidence
predictions of activity and highlight ‘out of domain’
compounds. Last, it was attempted to highlight chemicals of
similar biological activity by combining in silico grouping
methodologies. To do this, predicted bioactivity profiles of the
chemical inventory were compared with the profiles of two
well-characterized EDCs, BPA and DEPH. Grouping method-
ologies produced 19 and 4 compounds for their similarity with
BPA and DEHP, respectively, and among the identified
chemicals, several are known or suspected EDCs. The
presented work could provide in silico-derived evidence for
endocrine disrupting hazard, and the proposed strategy could
provide information for prioritization and identification of
suspect EDCs.
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