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A B S T R A C T   

Selective Serotonin Reuptake Inhibitors (SSRIs) are widely used medications for the treatment of major 
depressive disorder. However, long-term SSRI use has been associated with weight gain and altered lipid profiles. 
These findings suggest that SSRIs may have negative effects on metabolism. Exposure to certain chemicals called 
‘obesogens’ is known to promote lipid accumulation and obesity by modulating adipogenesis. Here, we inves-
tigated whether citalopram (CIT) and sertraline (SER) interfere with the process of adipogenesis, using human 
mesenchymal stem cells (MSCs) in a 2D and a 3D model. Assessment of intracellular lipid accumulation by 
fluorescence staining was used as a measure for enhanced adipogenesis. To explore possible mechanisms behind 
SSRIs’ effects, receptor mediated activity was studied using responsive cell lines for various nuclear receptors. 
Furthermore, RNA sequencing was performed in the 3D model, followed by differential gene expression and 
pathway analysis. A dose dependent increase in lipid accumulation was observed in both models with CIT and 
SER. For the 3D model, the effect was seen in a range close to reported steady-state plasma concentrations 
(0.065–0.65 μM for SER and 0.12–0.92 μM for CIT). Pathway analysis revealed unexpected results of down-
regulation in adipogenesis-related pathways and upregulation in phospholipids and lysosomal pathways. This 
was confirmed by an observed increase in lysosomes in the 2D model. Our findings suggest lysosomal dysfunction 
and disrupted lipid metabolism in mature adipocytes, leading to excessive phospholipid synthesis. Moreover, 
important adipogenic processes are inhibited, potentially leading to dysfunctional adipocytes, which might have 
implications in the maintenance of a healthy metabolic balance.   

1. Introduction 

Selective serotonin reuptake inhibitors (SSRIs), used in the treatment 
of moderate to severe major depressive disorder (MDD), are among the 
most used medications worldwide. Recent evidence suggests a link be-
tween long-term SSRI treatment and weight gain in adults, including 
two of the most prescribed SSRIs, citalopram (CIT) and sertraline (SER) 
(Arterburn et al., 2016; Blumenthal et al., 2014; Gafoor et al., 2018; 
Uguz et al., 2015). Studies report an increase in weight with CIT, ranging 
from 1.69 kg (≥ 4 months follow-up) to 2.68 kg (24 months follow-up) 
(Blumenthal et al., 2014; Serretti and Mandelli, 2010), while SER was 
associated with a weight increase ranging from 1.0 kg (9 months follow- 
up) to 4.76 kg (24 months follow-up)(Blumenthal et al., 2014; Serretti 
and Mandelli, 2010). Additionally, there are reports on altered lipid 
profiles such as increased serum triglyceride levels with CIT (an average 

increase of 18.89 mg/dL, p = 0.001) and total cholesterol levels with 
SER (an average increase of 3.85 mg/dL, p = 0.027) in female patients 
after 4 months follow-up (Beyazyüz et al., 2013), yet the mechanism 
behind these effects remains elusive. Although SSRIs are largely 
considered safe and prescribed to women during pregnancy, there is 
increasing concern related to their maternal and neonatal safety (Gill 
et al., 2020; Molenaar et al., 2020; Pariente et al., 2016). Given that CIT 
and SER are among the most commonly prescribed SSRIs to pregnant 
women, research on their obesogenic potential and the underlying 
mechanisms is timely, as these medications might be contributing to the 
worldwide increase in obesity. 

Obesity is characterized by an abnormal and unhealthy accumula-
tion of body fat and has evolved into a pandemic that is affecting people 
all around the world. In 2022, obesity is observed in 1 in 8 people 
globally (890 million people of 18 years of age or older) and in >160 
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million children and adolescents (between 5 and 19 years of age) 
worldwide (WHO, 2024). Besides being a serious health concern itself, 
obesity also acts as a contributing factor in the development of meta-
bolic syndrome, non-alcoholic fatty liver disease (NAFLD), and type 2 
diabetes (T2D) (Lustig et al., 2022). The traditional explanation for 
obesity is an imbalance between caloric intake and expenditure, favor-
ing increased caloric intake (WHO, 2024). However, while energy 
imbalance and genetics play pivotal roles, they alone cannot explain the 
increase in obesity rates over the last 40 years (Lustig et al., 2022; 
Schwartz et al., 2017). This has shifted the focus onto environmental 
factors, such as chemical exposure, as the cause of the current obesity 
pandemic. Starting from the early 2000s, there has been growing 
research on chemicals’ influence on adipogenesis, the process of 
adipocyte differentiation regulated by various transcription factors 
(Chamorro-García et al., 2013; Chen et al., 2016). Shortly, upon acti-
vation by a ligand the main regulator, peroxisome proliferator-activated 
receptor gamma (PPARγ), initiates adipocyte gene expression, inducing 
adipocyte differentiation (Janesick and Blumberg, 2016; Kamstra et al., 
2014; Sarjeant and Stephens, 2012). As a result of numerous studies, we 
know today that most of these chemicals, later termed “obesogens” 
(Grün et al., 2006), activate PPARγ in a relatively well-defined mecha-
nism to promote obesity (Blumberg and Egusquiza, 2020; Darbre, 2017; 
Kamstra et al., 2014; Lustig et al., 2022). Although the PPAR pathway is 
quite well-known, the knowledge on some of the other mechanisms is 
still very limited and can widely vary between chemicals (Blumberg and 
Egusquiza, 2020; Heindel et al., 2022). 

The most established model for screening obesogens is the in vitro 
adipogenesis assay using cell lines such as murine preadipocyte cells 
(3T3-L1) and multipotent mesenchymal stem cells (MSC) (Kassotis et al., 
2022; Legler et al., 2020). Although the cell line 3T3-L1 is robust and 
well characterized, its ability to detect obesogens acting through a 
different mechanism than PPARγ activation seems to differ between 
sources and lots (Kassotis et al., 2022, 2021). Human MSCs, offer 
improved assessment of adipocyte differentiation, by including adipo-
cyte lineage commitment (Kassotis et al., 2022; Legler et al., 2020). Most 
of the studies use 2D monolayer cultures, yet when comparing 2D grown 
adipocytes to in vivo adipose tissue, significant differences in 
morphology, size, and transcriptional profiles are observed (Klingelhutz 
et al., 2018). Recent studies in 3D set-ups have shown 3D adipogenesis 
models to be more representative of in vivo conditions with improved 
adipocyte differentiation and gene expression (Klingelhutz et al., 2018; 
Muller et al., 2019; Shen et al., 2021). 

Another important aspect that is getting more attention is the 
question of whether exposure to obesogens leads to functional and 
“healthy” adipocytes or dysfunctional adipocytes, which in turn has a 
profound impact on metabolic health (Lustig et al., 2022; Qian et al., 
2021). Generally, prototypical PPARγ activators, like thiazolidine-
diones, lead to enhanced adipogenesis, allowing proper functioning of 
adipose tissue with normal secretion of the insulin-sensitizing, anti-in-
flammatory, and anti-fibrotic hormone Adiponectin and other adipo-
kines (Ghaben and Scherer, 2019; Heindel et al., 2022). On the other 
hand, obesogens acting through other mechanisms have been associated 
with increased insulin resistance and inflammation in the adipose tissue 
(Ghaben and Scherer, 2019; Qian et al., 2021). An example is the well- 
studied obesogen tributyltin (TBT), that acts through both PPARγ and its 
heterodimeric partner, retinoid X receptor (RXR) (Chamorro-García 
et al., 2013; Li et al., 2011). TBT was shown to decrease glucose uptake 
and Adiponectin expression in RXR-induced adipocytes, creating a 
dysfunctional adipocyte with higher risk of progressing into obesity and 
T2D (Shoucri et al., 2017). Gene expression profiles differed consider-
ably between PPARγ and RXR induced adipocytes, demonstrating 
transcriptional profiling next to functional readouts could provide 
valuable insights into obesogens’ effects on adipose tissue development 
and function. 

In this context, considering the reported effects on body weight and 
lipid profiles, suggestive of enhanced fat accumulation and disrupted 

lipid metabolism, we hypothesized that CIT and SER might induce 
adiposity, potentially leading to the formation of dysfunctional adipo-
cytes. To test this hypothesis, we used a human MSC model to assess the 
effects of SSRIs on adipogenesis. To mechanistically explain these ef-
fects, we investigated the endocrine modalities using responsive cell 
lines for various nuclear receptors. We developed and optimized a 3D 
model, performing transcriptomics analysis to compare the transcrip-
tional profiles of 2D and 3D conditions to characterize the 3D model, as 
well as further clarifying the underlying mechanism behind SSRIs’ ef-
fects, via functional analyses on nuclear receptors and lysosomes. 

2. Materials and methods 

2.1. Chemicals 

Citalopram hydrobromide and sertraline hydrochloride were pur-
chased from Sigma-Aldrich (Germany). Product details for the SSRIs, the 
rest of the chemicals and reagents are provided in Supplementary In-
formation S1 (Table S1). Stock solutions for test chemicals were pre-
pared in dimethyl sulfoxide (DMSO, Sigma-Aldrich, Germany) prior to 
experiments and stored at − 20 ◦C. 

2.2. Cell culture 

2.2.1. Reporter cell lines 
Endocrine-related activity of the SSRIs was tested using reporter cell 

lines for various nuclear receptors. Potential agonistic/antagonistic ac-
tivity was tested on estrogen receptor (ER) mediated luciferase reporter 
gene (ER-Luc) human ovarian carcinoma (VM7Luc4E2) cells (Rogers 
and Denison, 2000), androgen receptor (AR) mediated luciferase re-
porter gene (AR-Luc) human breast carcinoma (T47D-ARE) cells 
(Blankvoort et al., 2001), dioxin/aryl hydrocarbon receptor (DR/AhR) 
enhanced green fluorescent protein reporter gene (DR-GFP) mouse 
hepatoma (H1G1.1c3) cells (Nagy et al., 2002), and peroxisome pro-
liferator activated receptor gamma and alpha receptors (PPARγ and 
PPARα) mediated luciferase reporter gene (PPARγ-Luc and PPARα-Luc) 
human HeLa cells (HG5LN-hPPARγ and HG5LN-hPPARα) (Seimandi 
et al., 2005). Cell culture and experimental procedures for the different 
reporter cell lines are provided in Supplementary Information S2, with 
differences in methodologies indicated in Table S2. 

2.2.2. Adipocyte differentiation from human mesenchymal stem cells 
Human bone marrow derived mesenchymal stem cells (hBM-MSCs) 

from a 61-year-old Caucasian male donor were purchased from Pro-
moCell (Germany) at passage 2 and expanded in the recommended 
media (MSC Growth Medium 2 with 10% Supplement Mix, PromoCell) 
according to manufacturer’s instructions. Cells were subcultured once 
after thawing, at 70–80% confluence and frozen in MSC Growth Medium 
2 containing 5% DMSO. All experiments were performed at passage 6 
(Fig. 1). 

MSCs were differentiated into mature adipocytes in 3D and 2D, using 
similar protocols but with adjustments for the different models. 0.1% 
DMSO was used as vehicle control, and prototypical PPARγ agonist 
Rosiglitazone (ROSI) at 0.5 μM was used as a positive control for adi-
pogenesis assays, and for inducing MSC differentiation for the mature 
adipocyte experiments. Differences in methodologies for the differenti-
ation and analyses are summarized in Table 1. 

For 3D experiments, MSCs were seeded in 0.2 mL culture medium 
(Minimum Essential Medium alpha (MEMα) supplemented with 15% 
FBS, 1% Penicillin-Streptomycin (P/S), 2% HEPES) in the inner wells of 
96 well ultra-low attachment (ULA) plates (Corning® 7007) at 5 × 103 

cells per well (adipogenesis, RNA-seq and QPCR assays). The outer rows 
were filled with PBS. After seeding, ULA plates were centrifuged at 150g 
for 2 min to facilitate the formation of spheroids. During 3D experi-
ments, spheroid formation was confirmed under the microscope two 
days after seeding and differentiation was induced by replacing half of 
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the medium (0.1 mL) with 2× differentiation medium (culture medium 
supplemented with 1 mM 3-isobutyl-1-methylxanthine (IBMX), 0.2 μM 
dexamethasone (Dex), and 10 μg/mL insulin). Half of the medium was 
refreshed subsequently with 1× differentiation medium (culture me-
dium supp. With 0.5 mM IBMX, 0.1 μM Dex, and 5 μg/mL insulin) every 
3 to 4 days after initial exposure. 

For 2D experiments, MSCs were seeded in 1 mL culture medium in 24 
well plates (Greiner Bio-One) at 25 × 103 cells per well (adipogenesis, 
RNA-seq and QPCR assays). Adipocyte differentiation was induced at 
100% confluency, four days after seeding, by replacing the entire culture 
medium with 1× differentiation medium (see above). Differentiation 
medium with the assigned exposures was refreshed subsequently every 3 
to 4 days for 14 days. Cells were exposed to 6 up to 8 concentrations of 
SER and CIT in a range around reported steady-state plasma concen-
trations (SSCs); 20–200 ng/mL (0.065–0.65 μM) for SER (De Vane et al., 
2002; Ronfeld et al., 1997), and 40–300 ng/mL (0.12–0.92 μM) for CIT 
(Baumann, 1996; Gutierrez and Abramowitz, 2000; Pollock, 2001). 

For the mature adipocyte experiments, cells were first differentiated 
with 0.5 μM ROSI for 12 days. On day 12, differentiation medium was 
replaced with culture medium containing only 5 μg/mL insulin, fol-
lowed by medium refreshments on days 14 and 17 (insulin medium with 
the assigned exposures, 10 μM SER and 30 μM CIT). Subsequently, cells 
were fixated and stained for analysis on day 21. 

For all experiments, three independent biological experiments were 
performed for each model (2D and 3D), with the exception of flow 
cytometry analysis (2D) which was done in two experiments. Each 
experiment consisted of a maximum of 6 (3D) or 3 (2D) plate replicates. 

For transcriptional profiling, cells were exposed to vehicle (DMSO) 

and positive control (ROSI at 0.1 μM) in 2D and 3D, while chemicals 
(SER at 0.1–1 μM and CIT at 1–10 μM) were tested in 3D. Three inde-
pendent experiments were performed for both 2D and 3D models 
(except for 3D control which is n = 4). 

2.3. Assessment of adipocyte differentiation 

MSCs were analyzed after 14 days of differentiation. For 3D, 50% 
medium was removed from the wells at every step, therefore 2×
concentrated solutions were prepared for the fixation and staining. Cells 
were fixated with 3.7% formaldehyde (37%, Sigma-Aldrich, Germany) 
solution in PBS for 30-min, rinsed 2 times with 0.1 mL PBS (again by 
removal of 50% fluid for the washing steps) and subsequently stained for 
intracellular lipids with 1 μg/mL Nile Red (Sigma-Aldrich, Germany) 
and 5 μg/mL Hoechst 33342 (Invitrogen, Thermo Fischer Scientific, NL) 
for 1.5 h, the given concentrations are the final concentrations in the 
well. After staining, cells were rinsed 2 times with PBS and left with 0.2 
mL PBS per well. Images were taken with a high-content microscope 
(CellInsight™ CX5 High-Content Screening (HCS) Platform (Thermo 
Scientific) of each spheroid at 10× magnification. Nile Red was imaged 
in the FITC channel (Ex 482/35, Em 536/40) and Hoechst in the DAPI 
channel (Ex 377/50, Em 447/60) and analyzed using CellProfiler soft-
ware (v4.2.4) (Stirling et al., 2021). Analysis pipeline is provided as 
supplementary. 

For 2D, Nile Red fluorescence was measured either with a fluores-
cence plate reader (Tecan, Infinite M2000) or flow cytometry (Accuri C6 
Flow Cytometer, BD Biosciences, NL). A similar fixation/staining pro-
cedure to 3D was performed for fluorescence plate reader, but by 
refreshment of the entire medium at every step, therefore preparing 1×
concentrated solutions in PBS. Cells were first fixed with 3.7% formal-
dehyde solution in PBS for 30-min, rinsed 2 times with 0.5 mL PBS and 
subsequently stained with 10 μg/mL Nile Red and 0.5 μg/mL Hoechst for 
1.5 h. Nile Red fluorescence was measured at Ex/Em 485/590 nm and 
Ex/Em 585/645 nm for neutral and phospholipids, respectively, with 
Hoechst at Ex/Em 355/460 nm for cell number. 

For flow cytometry analysis exposure medium was aspirated and 
cells were rinsed with 0.5 mL PBS, trypsinized (0.25 mL) for 10-min. 
After cell detachment was confirmed under the microscope, 0.75 mL 
freshly prepared buffer (Milli-Q water containing 1% Bovine Serum 
Albumin (BSA), 2 mM EDTA (ethylenediaminetetraacetic acid) and 
0.025 μg/mL Nile Red) was added to each well, cells were resuspended 
by pipetting up and down and incubated for at least 10-min. Half of the 
plate was measured at a time, cells were resuspended again to prevent 
clogging of the machine. Neutral and phospholipid accumulation was 
assessed using the Accuri C6 flow cytometer (BD Biosciences, NL). Flow 
cytometry analysis was performed by using the positive control ROSI as 
a basis for the gating strategy. The first gating (P1) was for separating 
cells from debris, based on SSC-A (side scatter-area)/FSC-A (forward 
scatter-area). Cells were further sorted according to lipid profiles (P2) 
based on Nile Red intensity, optical filters FL2 (Em 585/40) and FL3 
(Em > 670) were used for neutral and phospholipids, respectively. 

2.4. Lysosome analysis 

In the 2D model, we performed additional experiments for functional 
read-outs in the model, starting with measuring SSRIs’ effects on lyso-
somes during differentiation. We used a cell permeable dye that stains 
acidic compartments, LysoTracker Red DND-99 (Invitrogen, Thermo 

Fig. 1. Experimental design: Schematic representation of the experimental set-up for mesenchymal stem cell (MSC) culture and differentiation in 3D and 2D. First 
exposure, day 0 (D0), indicates the beginning and re-exposures indicate the refreshment of differentiation medium with the assigned exposures every 3–4 days. 

Table 1 
Differences in methodologies and analyses for the different adipogenesis assays.  

Assay 3D 2D 2D mature 
adipocytes 

Cell culture plates 
96 well ultra-low 

attachment 
(ULA) Corning® 

24 well Greiner 
Bio-One 

24 well Greiner 
Bio-One 

Cell density per 
well 5 × 103 25 × 103 25 × 103 

Seeding volume 
(mL) 0.2 1 1 

Time between 
seeding and 
exposures 

2 days 4 days 4 days 

Differentiation 
medium conc. 
(for the first 
exposure) 

2× 1× 1×

Total amount of 
exposures 

5 4 6 

Exposure 
procedure 

Replacement of 
50% medium, 

every 3 to 4 days 

Replacement of 
the entire 

medium, every 3 
to 4 days 

Replacement of 
the entire 

medium, every 3 
to 4 days 

Assay duration 14 days 14 days 21 days 

Analysis method 

High-throughput 
imaging 
RNA-seq 

QPCR 

Fluorescence 
plate reader 

Flow cytometry 
RNA-seq 

QPCR 

Fluorescence 
plate reader  
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Fischer Scientific, NL), and used Amiodarone (AMIO), a broad-spectrum 
antiarrhythmic drug and a known inducer of phospholipidosis (Reasor 
et al., 2006), as positive control. 

For the experiments, MSCs were differentiated in 2D as previously 
described. After 14 days of differentiation, cells were live stained with 
100 nM LysoTracker Red for lysosomes and 0.5 μg/mL Hoechst for cell 
nuclei. Staining solution was prepared in culture medium, according to 
manufacturer’s instructions, cells were incubated with LysoTracker Red 
for 1.5 h at 37 ◦C and 5% CO2. After staining, cells were rinsed 2 times 
with 0.5 mL PBS and left with 1 mL PBS per well. LysoTracker fluores-
cence was measured using a fluorescence plate reader (Tecan, Infinite 
M2000) at Ex/Em 565/599 nm, and Hoechst at Ex/Em 355/460 nm. 
Three independent experiments were performed with three plate repli-
cates for each experiment (2D). 

2.5. Brightfield and confocal imaging 

MSCs were fixed as described above. 3D spheroids were cut into 10 
μm sections using a cryostat and stained with Hematoxylin and Eosin 
(H&E) for imaging. For cryosectioning, spheroids that were exposed to 
control and ROSI (n = 6) were transferred from the 96 well plate to 
microcentrifuge tubes. Excess PBS was removed and 0.2 μL KP cry-
ocompound was added to the tube. A cryomold was prepared by freezing 
two layers of clear colored KP cryocompound at − 20 ◦C and the KP 
cryocompound containing spheroids was transferred to the cryomold. A 
new layer of yellow colored KP cryocompound was added on top to 
embed the spheroid. A cryostat (Leica CM3050s) was used to cut 10 μm 
sections of the spheroids. The sections were transferred to SuperFrost 
Plus, Adhesion Slides (VWR, NL) and dried overnight. For H&E staining, 
slides were incubated in distilled water for 30s; hematoxylin solution for 
2-min; eosin solution for 10s and rinsed with 95% ethanol for 30s. 
Followed by two-times 30s incubation in absolute ethanol and 2-min 
incubation in xylene. All slides were cover slipped with Entellan 
mounting medium and dried overnight. Pictures were taken with the 
Olympus BX60 WF microscope under 20× magnification. 

For fluorescence imaging, stained MSCs (see above) were used. Nile 
Red was imaged in the FITC channel (Ex 482/35, Em 536/40) and 
Hoechst in the DAPI channel (Ex 377/50, Em 447/60). 3D spheroids 
were imaged with Olympus/Evident Spin IXplore SoRa microscope 
under 20× magnification. 2D adipocytes were imaged with Leica DM IL 
LED microscope using LAS X software, under 20× magnification. 

2.6. RNA-seq analysis 

For RNA-seq analysis, MSCs were seeded in 24 (2D) or 96 (3D) well 
ultra-low affinity plates, as described above. In order to characterize the 
3D model, cells were exposed to control (0.1% DMSO) or positive con-
trol (0.1 μM ROSI) in 2D and 3D. CIT and SER were tested at their NOEC 
(no observed effect concentration) and LOEC (lowest observed effect 
concentration) in the 3D model (CIT at 1–10 μM, SER at 0.1–1 μM). 3 
independent biological experiments were performed for both 2D and 
3D, with one extra control for 3D. 

After exposures, total RNA was isolated and purified using the 
NucleoSpin® RNA extraction kit (Macherey-Nagel, Germany) from one 
confluent well of a 24 well plate or a pool of 10–20 spheroids. RNA 
integrity number (RIN) was determined with Agilent 2100 Bioanalyzer 
(Agilent Technologies, Ca, USA) using RNA Nano LabChip Kit (Agilent 
Technologies, Ca, USA). All samples were found to be of acceptable 
quality for sequencing (RIN > 9.0) and sent to Novogene (UK) for 
sequencing by poly-A capture, library preparation and analysis on the 
Illumina Novaseq using 150 bp paired end sequencing. Raw fastq files 
were adapter trimmed using trim_galore (v0.4.5, Babraham institute, 
UK) under standard parameters. STAR aligner (v2.5.4 b) was used to 
align and map sequences to the homo sapiens genome (GRCh38_v102 
https://www.ensembl.org) (Dobin et al., 2013). Mapping data is pro-
vided in Table S3. After alignment, the generated BAM files were loaded 

to SeqMonk sequence analysis tool (v1.41, Babraham Institute, UK) and 
mRNAs were quantified using the built-in mRNA seq pipeline. Data 
quality plots were generated, and all data was found to be of acceptable 
quality (Fig. S1 and S2). Clustering of the individual samples based on 
model and treatment is shown in Fig. S3. Normalization of the read 
counts and differential expression was conducted using the Deseq2 
method (Love et al., 2014). The data discussed in this publication has 
been deposited in NCBI’s Gene Expression Omnibus (Edgar et al., 2002) 
and is accessible through GEO Series accession number GSE242103 
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc= GSE242103). 

Differentially expressed genes (DEGs) were scored based on their p- 
value and shrunken log2 fold changes and imported to Webgestalt (Liao 
et al., 2019) for gene set enrichment analysis (GSEA) using KEGG (Kyoto 
Encyclopedia of Genes and Genomes) pathway and gene ontology (GO) 
databases. GSEA parameters were adjusted to only include pathways 
containing a minimum of 5 and a maximum of 200 genes per pathway. 
Subsequently, pathways were selected based on FDR values where at 
least one of the individual treatments exhibited a significant change 
(FDR < 0.05). For 2D vs 3D model comparisons, pathways that were 
significantly altered with ROSI treatment were used. We used normal-
ized enrichment scores (NES) for a more accurate comparison of the 
enriched pathways with different gene numbers (Xie et al., 2021). 
Functional networks were constructed in Cytoscape (v 3.9.1) using the 
ClueGO (v 2.5.9) and CluePedia (v 1.5.9) plugins (Bindea et al., 2009). 
Significant KEGG and GO pathways of each condition were imported to 
perform a Preselected Functions analysis using the KEGG and GO bio-
logical processes ontologies (v 16-05-2023). GO term fusion was enabled 
to prevent duplicate pathways. 

For further exploration of the RNA-seq data, DEGs were selected for 
either one of the treatments in 3D (n = 3848) and clustered using the k- 
means method (Cluster 3.0) (Koch et al., 2018). Silhouette score was 
used to determine the optimal number of clusters and evaluate the 
quality of clustering. DEG lists of clusters were imported to Webgestalt 
for over representation analysis (ORA) with KEGG pathways, using the 
complete gene list as reference set (parameters were kept the same as the 
GSEA, see previous section). Representative pathways were selected 
from each cluster and violin plots were generated with median-adjusted 
normalized counts of the underlying genes. Top 20 DEGs from each 
representative pathway were selected (based on significance and 
meaningful expression levels) and visualized as a heatmap. Violin plots 
and heatmap are generated using GraphPad Prism (v9.0). 

2.7. QPCR analysis 

We performed QPCR analysis for selected adipogenic genes to 
confirm the results of the RNA-seq. MSCs were seeded in 96 well ultra- 
low affinity plates as described above and differentiated in 3D. Cells 
were exposed to the same conditions as the RNA-seq (see above) in 2 
independent biological experiments. 

After the exposures, RNA isolation and purification was performed 
(as described for RNA-seq analysis). RNA amount of the samples was not 
measured, due to low amounts of RNA (below detection limit). RNA was 
directly converted into cDNA with the high-capacity cDNA RT kit 
(Applied Biosystems, Grand Island, NY) according to manufacturer’s 
recommendations, followed by a 5× dilution with sterile water. RNA 
yield was qualitatively assessed by checking the Cq value of Beta Actin 
during QPCR. Analysis was performed on a CFX96 (Bio-Rad Labora-
tories, The Netherlands) in 2 technical duplicates for each sample with 
the following protocol: 3-min denaturation at 95 ◦C, followed by 40 
cycles of 15 s at 95 ◦C and 45 s at 60 ◦C. After the run, a melting curve 
was generated from 65 to 95 ◦C. Total reaction volume was set to 10 μL 
that consisted of 5 μL iQ™ SYBR® Green Supermix (Bio-Rad, The 
Netherlands), 250 nM of forward and reverse primers, 2.5 μL of diluted 
cDNA, and nuclease free water. In prior QPCR experiments, all primers 
have been tested for efficiency (by serial dilutions) and specificity (by 
melting curve and gel electrophoresis). After testing various reference 
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genes (Primer sequences for reference genes and genes of interest are 
provided in Table S4), Beta Actin and Nono were selected to calculate 
normalized gene expression using the ΔΔCq method. Differential gene 
expression was calculated as log2 fold changes compared to vehicle 
control. Data was clustered and presented as a heatmap with ClustVis 
(Metsalu and Vilo, 2015). Scaling was disabled and rows clustered using 
Euclidean distance and Ward linkage, with columns clustered using 
Euclidean distance and single linkage. 

2.8. Data and statistical analysis 

In reporter cell line assays, results are expressed as percentages of 
maximum luciferase or fluorescence activity induced by the reference 
chemical. In MDC experiments, Nile Red intensities are expressed as fold 
induction compared to control (DMSO). Data from independent exper-
iments are analyzed in GraphPad (v9.0) by two-way ANOVA with 
treatment and experiment number as independent variables. No main 
effect or interaction effect was found for replicate experiments. Subse-
quently, data is averaged over the independent experiments and used for 
statistical analysis with one-way ANOVA, employing Dunnett’s multiple 
comparisons test, after the Shapiro-Wilk tests for normal distribution 
analysis (GraphPad (v9.0)). 

Data from MSC experiments is used for benchmark dose (BMD) 
modeling via PROAST Web (v70.1, RIVM, NL) (Hardy et al., 2017). Fold 
induction values were put in as continuous summary data with standard 
deviation as dispersion measure. The standard 5% change (corre-
sponding to a 1.05-fold change) was considered not sufficient, therefore 
critical effect size (CES) was set at 20%, corresponding to a 1.2-fold 
induction compared to control, as previously used by Norgren et al. 
(2022). Two different families of models were fit to the data (expo-
nential and Hill), Akaike Information Criterion (AIC) was set to 2, and 
model averaging was not employed. The resulting confidence intervals 
were expressed in terms of BMDL and BMDU, the lower and upper bound 
of the 90% confidence interval, respectively. 

3. Results 

3.1. Characterization of the 3D model 

To study the effects of SSRIs on adipocyte differentiation we chose a 
3D MSC adipogenesis model which is reported more physiologically 
relevant compared to conventional 2D models (Klingelhutz et al., 2018; 
Shen et al., 2021). 

To test this, we characterized the 3D model with a prototypical 
PPARγ ligand, ROSI as a positive control. We performed H&E staining 
and confocal imaging, comparing control (DMSO) and ROSI spheroids to 
examine the morphology of 3D spheroids, including lipid droplet dis-
tribution and possible signs of necrosis in the inner core of the spheroid. 
H&E staining and confocal microscopy confirmed an even distribution 
of lipid droplets throughout the spheroid without any sign of cell death 
in the core (Fig. S4a–d). Fluorescence microscopy confirmed increased 
lipid accumulation with ROSI treatment in 2D (Fig. S4e–f). 

ROSI treatment increased the size of 3D spheroids in terms of lipid 
accumulation but did not affect Hoechst staining, indicating no signifi-
cant increase in cell proliferation compared to the control (Fig. S4g). 
When comparing 3D spheroids with 2D monolayer adipocytes, fewer 
and larger lipid droplets appeared, compared to 2D, indicating a 
phenotype more similar to in vivo adipose tissue, especially visible with 
ROSI treatments. We tested ROSI from 6 up to 9 concentrations in 2D 
and 3D and observed a similar induction in both models (Fig. S4h), 
further confirming the efficiency of the 3D model. 

3.2. Application of the 3D model for the assessment of SSRIs 

Following characterization, we tested the SSRIs on the 3D model. 
Where we observed an increase in neutral lipids, an indication of 

enhanced adipogenesis, with both CIT and SER (Fig. 2a–b). The induc-
tion was seen in a concentration-dependent manner, comparable to 
positive control, the prototypical PPARγ agonist, ROSI. 

BMD analysis revealed lower and upper thresholds (BMDL-BMDU) of 
1.32–3.27 μM for CIT, and 0.35–0.87 μM for SER, confirming the SSRIs 
induced adipogenesis in the range of their reported SSCs (0.065–0.65 
μM for SER and 0.12–0.92 μM for CIT). 

3.3. Effects on endocrine receptors 

To test whether enhanced adipogenesis with SSRIs was due to an 
endocrine mode of action, receptor mediated activity was investigated 
in agonism and antagonism assays for ER, AR, and DR. SSRIs were tested 
in at least three biological experiments for both endpoints for each re-
ceptor. Each experiment consisted of 3 to 4 plate replicates. 

Reference chemicals were included in agonism and antagonism as-
says for all the receptors. EC50 values calculated for reference agonists 
(in agonism assays) were used to test antagonistic responses in antago-
nism assays. Detailed information on experimental set-up and reference 
chemicals is provided in supplementary data (Table S2), concentration- 
response curves are shown in Fig. S5a–f. To identify true antagonistic 
responses that are not due to cytotoxicity cell viability was determined 
via mitochondrial activity (Alamar Blue assay). SER at 30 μM was found 
to be cytotoxic for both ER-Luc and AR-Luc cells, therefore used at the 
highest concentration of 10 μM for the following experiments (Fig. S5g). 
CIT did not decrease cell viability at the highest tested concentration of 
30 μM (Fig. S5.) 

Estrogenic, androgenic or dioxin-like activity was not observed with 
CIT or SER at the tested concentrations (data not shown). Additionally, 
antagonistic activity was not observed on the receptors with either CIT 
or SER, indicating a different mechanism of action than ER, AR, or DR 
agonism/antagonism behind their adipogenic effects. Results are sum-
marized in Fig. S5h. 

3.4. Results of RNA-seq 

To clarify the mechanisms of action of the chemicals, as well as 
characterizing the 3D model, we performed RNA-seq analysis and 
compared the transcriptional profiles of cells treated with control (0.1% 
DMSO), positive control (0.1 μM ROSI) or test chemicals (0.1–1 μM SER, 
1–10 μM CIT). Cells treated with control and ROSI were differentiated 
parallel in 2D and 3D, while SER and CIT treatments were only per-
formed in 3D. 

3.4.1. Comparison of the 2D and 3D models 
We performed differential expression analysis, comparing first the 

control and ROSI treatments within the models, in order to assess the 
differences in the transcriptional profiles of 2D vs 3D models. Initial 
clustering of the data was done with a principal component analysis 
(PCA) plot based on the different models and treatments, where we 
found a clear separation between 2D and 3D in PC1 (47.3%) and 
treatment in PC2 (17.2%). Notably, ROSI treatment showed separate 
clustering in the same direction compared to the control indicating a 
similar transcriptional profile (Fig. S6a). Further exploration in DEGs 
revealed a 50% overlap (2082) between the two models after differen-
tiation with ROSI (Fig. S6b). When looking at the two models within the 
same treatment the overlap ratio goes up to 61% (4467), highlighting 
the similar expression profiles of the different models (Fig. S6b). 

Subsequently, DEGs were scored based on significance and differ-
ence in expression (see above) for gene set enrichment analysis (GSEA) 
via KEGG and GO pathway databases. Most of the pathways were altered 
similarly after ROSI treatment in both models (Full pathway list is 
provided as supplementary data). Shortly, metabolic pathways essential 
for adipogenesis, such as PPAR signaling, were upregulated; while 
pathways inhibiting adipogenesis, such as Wnt signaling and TGF-beta 
signaling, were downregulated (Fig. S6.c). Notably, the oxidative 
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phosphorylation pathway was found to be highly upregulated in both 
models. Although the ribosome pathway was upregulated in 2D and 
downregulated in 3D with ROSI treatment, it was the strongest upre-
gulated pathway in 3D compared to 2D within the same treatment (data 
not shown), as shown in a previous study (Shen et al., 2021). According 
to the functional network of 2D and 3D, adipogenic pathways can be 
seen clustering together, altered similarly in both models during 
adipocyte differentiation, confirming the results of the individual 
pathway analyses (data not shown). Notably, some pathways that could 
be important in adipogenesis such as adipocytokine signaling and 
glycerophospholipid metabolism are only significantly upregulated in 
the functional network of the 3D model, however, this could be the 
result of using a more stringent threshold for the significant pathways 
that were used in this particular analysis (FDR < 0.01). 

3.4.2. SSRIs inhibit adipogenic genes and induce lysosomal pathways 
For the SSRIs, differential gene expression analysis revealed a single 

DEG for SER 0.1 μM, (IGF-2: insulin like growth factor 2) which was 
downregulated, and 134 genes for SER 1 μM, of which 63% (85) were 
downregulated. CIT treatments mainly resulted in upregulation, 71% 
(45) of 63 genes were upregulated for CIT 1 μM, and 57% (783) of 1355 
genes were upregulated for CIT 10 μM. A total of 23 genes were found 
overlapping between SER 1 μM and CIT treatments. Among these, there 
were some associated with adipogenesis or lipid metabolism including 
adiponectin, lipoprotein lipase, and fatty acid binding protein 4 (ADI-
POQ, LPL, FABP4 respectively). Surprisingly, these were downregulated 
with all the treatments. Following ranking of genes based on their sig-
nificance and fold change (see Methods), GSEA analysis revealed a 
generally reversed gene expression profile compared to the positive 
control, ROSI (Fig. 3a). Metabolic pathways such as PPAR signaling, 
non-alcoholic fatty liver disease (NAFLD) and lipid metabolism were 
found consistently downregulated, in a concentration dependent 
manner, with the SSRI treatments (Fig. 3a), in the functional network of 
SER and CIT these pathways can be seen clustering together (Fig. 3b). 
Notably, the lysosome and related pathways were upregulated by all 
SSRI treatments (Fig. 3c), and this effect was significant for SER 1 μM 
and both CIT concentrations (FDR < 0.05). Phagosome and phospholi-
pase D signaling, other pathways related to lysosome function (Corrotte 
et al., 2006), were significantly affected by CIT at 10 μM (Fig. 3c). 

We performed further analyses on the RNA-seq data for an in-depth 
assessment of the differences in gene expression profiles between ROSI 
and the SSRIs. Fig. 4a shows the distribution of all genes for each 
replicate sample, clearly showing the separation between ROSI and SSRI 

treatments. 3848 genes were significantly affected by at least one of the 
treatments (FDR < 0.05) and separated into 3 clusters using k-means 
clustering. Quality of the clustering was confirmed by silhouette scoring, 
and using the genes within the clusters we performed over representa-
tion analysis (ORA), focusing on KEGG pathways. First two clusters both 
contain metabolic pathways that are upregulated by ROSI and down-
regulated consistently by SSRI treatments. First cluster consists of 1646 
DEGs, leading to 128 enriched pathways. Among these are oxidative 
phosphorylation and NAFLD pathways, with higher enrichment ratios 
and lowest FDR values compared to other pathways (Fig. 4b). The sec-
ond cluster is likely representing adipocyte differentiation with path-
ways such as PPAR signaling, regulation of lipolysis in adipocytes and 
other metabolic pathways (Fig. 4b). It consists of 172 mapped genes and 
66 enriched pathways in total. The final cluster has the highest number 
of enriched pathways, with 196 pathways from 750 mapped genes, and 
contains genes consistently upregulated by SSRIs and downregulated by 
ROSI, among which the lysosome pathway as one of the most significant 
pathways (Fig. 4b). 

In Fig. 4c violin plots of the representative pathways from each 
cluster are shown. For the oxidative phosphorylation pathway, the 
driver genes for the upregulation with ROSI are from complexes III 
(cytochrome bc1) and IV (cytochrome c oxidase), including CYC1 (cy-
tochrome c1), COX5A (cytochrome c oxidase subunit 5A), UQCRFS1 
(ubiquinol-cytochrome c reductase, Rieske iron‑sulfur polypeptide 1), 
UQCRC2 (ubiquinol-cytochrome c reductase core protein 2). Gene expres-
sion heatmap in Fig. 4d shows that these genes are downregulated with 
the SSRIs in a dose dependent manner. The upregulation of PPAR 
signaling pathway following ROSI treatment is much stronger, as ex-
pected. Driver genes for the upregulation with ROSI are involved in 
adipocyte differentiation, including PCK1 (phosphoenolpyruvate carbox-
ykinase 1), FABP4 (fatty acid binding protein 4), ADIPOQ (adiponectin), 
PLIN5 (perilipin 5) (Fig. 4c). Similarly, with the SSRIs these are down-
regulated in a dose dependent manner (Fig. 4d). For the lysosome 
pathway cathepsins (CTS), a family of lysosomal proteases, are among 
the highest upregulated genes with the SSRIs treatments, especially with 
CIT at 10 μM, while being downregulated by ROSI (Fig. 4c–d). 

3.5. QPCR analysis 

QPCR analysis on selection of adipocyte genes was performed to 
confirm the findings of RNA-seq. We observed a similar expression 
profile with QPCR analysis, confirming the results of RNA-seq, with 
downregulation of genes involved in PPAR signaling after SSRI 

Fig. 2. Increase in neutral lipids during differentiation with (a) citalopram (CIT), (b) sertraline (SER), and (c) rosiglitazone (ROSI), presented as fold change (FC) 
compared to control (DMSO). Bars represent averages of 3 independent experiments and error bars indicate standard deviation. ***p < 0.005; ****p < 0.0001 
(GraphPad Prism, v9.0). 
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Fig. 3. (a) Annotated heatmap with normalized enrichment scores (NES) of altered Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways after rosiglitazone 
(ROSI 0.1 μM), citalopram (CIT 1 and 10 μM), and sertraline (SER 0.1 and 1 μM) treatments in 3D. Pathways that are down (blue) or upregulated (red) significantly 
for at least one of the conditions are shown (FDR < 0.05). Functional network of SER and CIT of (b) down, and (c) upregulated KEGG and gene ontology (GO) 
pathways (FDR < 0.05). Colors of the circles represent different treatments. Sizes represent significance and are dependent on the smallest FDR value if more than 
one treatment is significant. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 4. K-means clustering and pathway analysis: (a) Normalized counts of all genes for each replicate sample (Control (DMSO), rosiglitazone (ROSI), citalopram 
(CIT 1–10 μM), and sertraline (SER 0.1–1 μM)), presented as principal component analysis (PCA) plot (ClustVis). Ellipses represent the 95% confidence intervals. (b) 
Annotated pathways with higher enrichment ratio (ER) and significance (n = number of genes per cluster). Scale bar shows the number of overlapping genes between 
mapped input and gene set. NAFLD: Non-alcoholic fatty liver disease; PPAR: Peroxisome proliferator-activated receptor; PGs: Proteoglycans; FDR: False Discovery 
Rate. (c) Plots of median-adjusted normalized counts of the genes within representative pathways (n = overlap between mapped input and gene set), dashed lines set 
at median values of control treatment. (d) Heatmap with median-adjusted normalized counts of 20 representative genes from each pathway (GraphPad Prism, v9.0). 
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treatments, contrary to ROSI (Fig. S7). We also observed upregulation of 
genes involved in insulin signaling (INSR and IGF1R) with the SSRIs. 

3.6. Effects on 2D MSCs during and after differentiation 

In light of the results of the RNA-seq analysis, we performed follow 
up experiments with functional read-outs in the 2D model, that is more 
applicable for imaging and plate reader analyses. We first studied the 
effects of SSRIs on different lipid profiles during and after adipocyte 
differentiation. We used the 2D MSC adipogenesis model followed by 
flow cytometry analysis to measure both neutral and phospholipid 
accumulation by measuring two channels with Nile Red staining (see 
methods). Fluorescence microscopy image of Nile Red in the two 
channels shows the separation between lipids (Fig. 5a–d), proving the 
method’s applicability in quantifying both neutral and phospholipids. 

As expected, CIT and SER both increased neutral lipids in 2D MSCs 
during differentiation. However, a much stronger induction was 
observed in the phospholipid channel with both SSRIs (Fig. 6a–b). BMD 
modeling confirmed that SSRIs had a stronger effect on phospholipids 
(Table 2). By comparing BMDs, we observed that SER induced phos-
pholipids at nearly 10 times lower concentrations than neutral lipids. 

Furthermore, the effect on phospholipids with SER was observed in a 
range around reported plasma SSCs (0.065–0.65 μM). Although CIT 
showed a strong induction in the phospholipid channel, BMD analyses 
revealed a similar range compared to neutral lipids and above the 
plasma SSCs (Fig. 6c). Notably, the confidence interval of the BMD of 
phospholipids was lower compared to neutral lipids, indicating a more 
accurate estimate of the BMD. 

Next, we studied the effects on lysosomes during differentiation via 
LysoTracker Red staining. Here, a strong induction was observed indi-
cating an increase in the formation of lysosomes (Fig. 6d). SSRIs at the 
tested concentrations led to an induction as high as the positive control, 
amiodarone. 

As the patients receiving SSRI treatment are mostly adults, we per-
formed additional experiments on mature adipocytes. We studied the 
effects on MSCs after differentiation to see if SSRIs would exert the same 
effect, changing the lipid profile from neutral lipids to phospholipids. 
We observed no effect on neutral lipids with the SSRIs after differenti-
ation (Fig. 6e). However, phospholipid levels increased, indicating SSRIs 
also cause phospholipid accumulation in the lysosomes of mature adi-
pocytes (Fig. 6e). 

3.7. Effects on peroxisome proliferator-activated receptors (PPARs) 

To test whether the downregulation in the PPAR signaling pathway 
was due to an effect at the receptor level, we studied the effects of SSRIs 
on PPARγ and PPARα. Agonist and antagonist activities of SSRIs were 

tested in at least three independent experiments for both PPARγ and 
PPARα. Each experiment consisted of 3 to 4 plate replicates. 

EC50 values calculated for reference agonists for PPARγ (ROSI) and 
PPARα (GW7647) (in agonism assays) were used to test antagonistic 
responses in antagonism assays. T0070907 was used as the reference 
antagonist for PPARγ. Detailed information on experimental set-up and 
reference chemicals is provided in supplementary data (Table S2), 
concentration-response curves are shown in Fig. S8a–c. Cell viability 
was determined via mitochondrial activity (Alamar Blue assay), to 
identify true antagonistic responses that are not due to cytotoxicity. CIT 
or SER did not decrease cell viability at the highest tested concentrations 
(CIT at 30 μM and SER at 10 μM) (data not shown). 

Receptor mediated activity was not observed with CIT or SER at the 
tested concentrations (data not shown), indicating a different mecha-
nism of action than receptor binding behind the SSRIs’ downregulatory 
effect on the PPAR signaling pathway. 

4. Discussion 

Here, we report the effects of two SSRIs, CIT and SER, on the for-
mation of adipocytes by using a newly set-up human relevant 3D model 
for adipogenesis from MSC. In combination with whole transcriptomics 
and functional analyses we were able to pinpoint the mode of action of 
these chemicals, pointing towards the formation of lysosomes and 
increased phospholipids, while inhibiting important adipogenic pro-
cesses, indicating the formation of dysfunctional adipocytes. 

To study the effects of the two antidepressants, we first developed a 
3D model as there is a growing need for physiologically and human 
relevant models to assess chemicals’ effects on metabolism, including 
adipogenesis (Legler et al., 2020). Conventional test models often rely 
on adipogenic progenitor cells, such as the murine preadipocyte cell line 
3T3-L1 (Kassotis et al., 2022). As these are already committed to the 
adipogenic lineage their use only allows for the assessment of adipocyte 
differentiation. Another limitation of conventional cultures is the com-
mon use of 2D monolayers, as there are significant differences in 
morphology, size, and transcriptional profiles when comparing 2D 
grown adipocytes to in vivo adipose tissue. 3D spheroid models have 
been developed to improve adipogenic testing and recent studies with 
murine and human preadipocytes have shown 3D adipogenesis models 
to be more representative of in vivo conditions with improved differen-
tiation and higher adipocyte gene expression (Klingelhutz et al., 2018; 
Muller et al., 2019; Shen et al., 2021). Although these spheroid models 
show great improvements over conventional 2D models, these were all 
developed using adipocyte progenitor cells. On the other hand, mesen-
chymal stem cells (MSCs) isolated from bone marrow remain multi-
potent, allowing for the assessment of adipocyte lineage commitment in 
addition to adipocyte differentiation. In this study, we employed human 

Fig. 5. (a) Fluorescence microscopy image of 2D adipocytes stained with Nile Red and Hoechst for intracellular lipids and cell nuclei, respectively (merged). Scale 
bar: 200 μm. Split channels showing (b) cell nuclei (DAPI channel), (c) neutral lipids (NL) (FITC channel), and (d) phospholipids (PL) (Texas Red channel). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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MSCs in a 3D setting with the purpose of improving both human rele-
vance and model applicability, answering the need for a relevant adi-
pogenesis model. 

We compared 3D spheroids to 2D grown adipocytes based on 
phenotype and transcriptional profiles. One of the main concerns in 3D 
cell models is the formation of a hypoxic core, due to decreased oxygen 
diffusion towards the center of the spheroid. However, both histological 
analyses using H&E staining and confocal imaging confirmed an even 
distribution of lipid droplets throughout the spheroid without any sign 
of a necrotic core. Moreover, genes involved in hypoxia were not 
induced, but generally downregulated, such as SLC2A1, VEGFA and 
SERPINE1 (Supplemental data) (Trayhurn et al., 2008). Likely, the 
limited number of cells allowing rapid diffusion of nutrients and oxygen 
aided in this observation, compared to previous studies with higher cell 
numbers (Schmitz et al., 2021). Furthermore, spheroids exposed to ROSI 
differed from 2D adipocytes in phenotype following differentiation, 
forming fewer and larger lipid droplets that resemble adipose tissue in 
vivo. This was also shown in multiple publications, as well as tran-
scriptomic profiles that resemble the human situation better than the 2D 
models (Klingelhutz et al., 2018; Shen et al., 2021). Transcriptional 
profiles showed quite comparable results after ROSI treatment in both 
models. However, more pathways related to insulin and adipocytokine 
signaling, and structural integrity were affected in 3D. Notably, within 
the same treatment, most pathways were downregulated in 3D 
compared to 2D. A significant one is TGF-beta signaling pathway, known 
to inhibit adipogenesis by reducing PPARγ expression and CEBPβ acti-
vation (Chen et al., 2016). This stronger inhibition in the 3D model 
might lead to increased adipogenesis, by providing a more suitable 
setting for the induction of adipogenic genes, as shown in a previous 
study (Shen et al., 2021). Overall, the novel 3D model shows a more 
similar phenotype to adipose tissue, and transcriptional profiles indicate 
a better response to adipogenic stimuli than 2D. Although a direct 
comparison to human adipose tissue in terms of transcriptional profiles 
would be the next step to characterize this model, all our analyses 
indicate it a suitable model for assessing the effects of SSRIs on adipo-
genesis. In future studies, inclusion of additional cell lines found in ad-
ipose tissue, such as macrophages and endothelial cells could enhance 
the physiological relevance of the model and shed light on the interplay 
between metabolic organs and immune responses. 

Next, we tested the adipogenic properties of CIT and SER and 
initially observed increased lipid accumulation, an indication of 
enhanced adipogenesis, with both SSRIs. This effect was observed in a 
concentration dependent manner, and using a benchmark dose 
approach points of departure were overlapping with reported plasma 
SSCs. 

To elucidate the underlying mechanism behind SSRIs’ effects, we 
first explored endocrine modes of action. As peroxisome proliferator- 
activated receptors gamma (PPARγ) is the key regulator of 

adipogenesis, we studied the agonistic activity on and PPAR gamma and 
alpha (PPARα). However, agonistic activity was not observed with the 
CIT and SER on either PPARγ or PPARα. Moreover, we explored the 
estrogenic, androgenic and dioxin-like activity of SSRIs using receptor 
cell assays, as there are obesogens shown to increase adiposity via such 
mechanisms. In animal studies prenatal exposure to estrogenic obes-
ogens has been shown to promote the development of obesity in the 
offspring, occurring through estrogen receptor activation (Darbre, 2017; 
Heindel et al., 2022; Newbold et al., 2007), additionally, some obes-
ogens with dioxin-like activity have been shown to induce adipogenesis 
via indirectly altering PPARγ expression (Casals-Casas and Desvergne, 
2011). SSRIs did not exert agonistic or antagonistic effects on ER, AR or 
DR, suggesting a mechanism beyond direct receptor-mediated activity 
driving the adipogenic effects. 

To further explore the mechanisms, we performed RNA-seq analysis 
that revealed a distinct gene expression profile in 3D after SSRI treat-
ments compared to the positive control ROSI. To our surprise, key adi-
pogenic genes and important pathways related to adipocyte 
differentiation (such as PPAR signaling, adipogenesis and fatty acid 
metabolism) were found downregulated compared to ROSI treatment. In 
contrast, pathway analyses unveiled upregulation in pathways related to 
phospholipids and lysosomes with SSRIs, which were confirmed with 
additional experiments where an induction was observed for both 
phospholipids and lysosomes. Interestingly, in these additional analyses, 
the induction in phospholipids was higher compared to neutral lipids in 
the same model, showing even lower BMD levels as with neutral lipids. 
We additionally studied the effects of SSRIs on mature adipocytes, as the 
patients receiving antidepressant treatment are mostly adults, to see if 
SSRIs would change the lipid profile from neutral lipids to phospho-
lipids. We observed no significant effect on neutral lipids with the SSRIs 
after differentiation, however, phospholipid levels increased, implying 
the effects of SSRIs are also apparent in mature adipocytes. 

Taking all data together we hypothesized that these SSRIs lead to a 
common adverse effect of a group of pharmaceuticals, commonly known 
as cationic amphiphilic drugs (CADs). Shortly, CADs contain a pro-
tonable amine group attached to a lipophilic group that allows the 
unprotonated neutral form to pass through cellular membranes. How-
ever, upon reaching an acidic environment the amine group is proton-
ated and no longer able to pass through the membrane, getting 
“trapped” inside the acidic compartment (Kazmi et al., 2013). Lysosomal 
trapping via this mechanism leads to the inhibition of lysosomal en-
zymes, specifically lysosomal phospholipase a2 (LPLA2). Located on the 
lysosomal membrane, LPLA2 is mainly involved in the degradation of 
lysosomal phospholipids (Hinkovska-Galcheva et al., 2021). Lysosomal 
accumulation of CADs can result in competitive inhibition of LPLA2, 
leading to excessive accumulation of lysosomal phospholipids, a process 
known as drug-induced phospholipidosis (DIP). DIP is mainly shown in 
vivo, with liver and lung being common targets, ultimately leading to 
pulmonary or liver fibrosis (Hinkovska-Galcheva et al., 2021; Reasor 
et al., 2006). Considering the existing knowledge on the physiochemical 
properties of CIT and SER (Reasor et al., 2006), and that both SSRIs were 
reported to inhibit LPLA2 with a reported IC50 of 8.6 and 19.5 μM, 
respectively (Hinkovska-Galcheva et al., 2021), our results strongly 
point towards their lysosomal accumulation in maturing adipocytes, 
inhibiting LPLA2 to promote phospholipid accumulation. The current 
gene expression data does not show a difference in LPLA2 expression 
after SSRI treatment. However, this is not surprising as the inhibition of 
LPLA2 occurs through a molecular mechanism that is not regulated by 

Fig. 6. Increase in (a) neutral and (b) phospholipids in 2D MSCs during differentiation with citalopram (CIT), and sertraline (SER). Presented as fold change (FC) 
compared to control (DMSO). (c) Benchmark dose (BMD) modeling on SSRIs’ effects on neutral/phospholipids (NL/PL). Min-max values correspond to 90% con-
fidence intervals (BMDL-BMDU) with ticks at median BMDs. SSC: Steady-state concentrations. (d) Induction of lysosomes in 2D MSCs during differentiation with CIT 
(10–30 μM), SER (3.3–10 μM), and amiodarone (AMIO 10 μM), presented as fold change compared to control. (e) Increase in neutral and phospholipids in mature 
adipocytes (2D) by CIT (30 μM), SER (10 μM), and AMIO (10 μM), presented as fold change compared to control. Bars represent averages of 2 to 3 independent 
experiments and error bars indicate standard deviation. * p = 0.05–0.005; ** p = 0.005–0.0005; *** p = 0.0005–0.0001; **** p < 0.0001 (GraphPad Prism, v9.0). 

Table 2 
Benchmark dose (BMD) for a 20% increase in neutral/phospholipids with SSRIs, 
including 90% confidence intervals (BMDL-BMDU) and median BMDs 
(BMDMED).  

SSRI Assay (2D) BMDL (μM) BMDU (μM) BMDMED (μM) 

SER Neutral lipids 
Phospholipids 

1.89 
0.26 

6.35 
0.66 

4.12 
0.46 

CIT 
Neutral lipids 
Phospholipids 

1.12 
1.39 

4.80 
3.15 

2.96 
2.27  
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gene expression. Moreover, Kagebeck et al. (2018) tested the effects of a 
group of CADs (not including CIT or SER, but including amiodarone and 
another SSRI, fluoxetine) on the differentiation of 3T3-L1 cells. They 
found that CADs inhibited adipocyte differentiation and that the 
inhibitory effect showed a strong positive correlation with lysosomal 
accumulation of the CADs and the inhibition of autophagy within the 
cells. Autophagy, the process of lysosomal degradation of intracellular 
components like damaged organelles or proteins, plays a pivotal role in 
various cellular processes, including lipid metabolism and adipocyte 
differentiation (Cabrera-Reyes et al., 2021). In this context, they 
concluded that high accumulation of CADs in lysosomes leads to lyso-
somal dysfunction and the inhibition of autophagy, which in turn dis-
rupts the process of adipocyte differentiation (Kagebeck et al., 2018). 
Their findings align with our findings of decreased adipogenesis in MSCs 
with the SSRIs. 

Interestingly, adverse outcome pathways have been developed 
around lysosomal disruption for liver toxicity (AOP144, lysosome 
dysfunction; AOP130, phospholipase inhibition) (Kuburic et al., 2023; 
Oh et al., 2023), in which many key events are present in our data. Apart 
from lysosome formation, mitochondrial dysfunction is a common key 
event in both AOPs, similarly, mitochondria function (Oxidative Phos-
phorylation) was also predicted to be affected in our RNA seq dataset. 
CADs are also known to accumulate in mitochondria, causing increased 
proton transfer across the inner mitochondrial membrane towards the 
matrix, which in turn disrupts electron transfer crucial for ATP synthesis 
(Fromenty, 2023). Future research with chronic exposure experiments 
might give insights into further progression of this pathway leading to 
inflammation and cell death. 

The downregulation of many adipocyte related pathways made us 
hypothesize whether SSRIs were antagonists for PPARγ. However, 
additional experiments on the PPARγ reporter using an antagonist set-up 
did not show any effect. Although we do not know exactly how these 
SSRIs are able to suppress adipogenic pathways, we hypothesize that 
this could be a compensation for the increased production of phospho-
lipids and a balance towards lysosome formation, leading to less func-
tional adipocytes. 

The effects observed in our study are remarkably close to the steady 
state concentrations observed in clinical studies. These concentrations 
represent the total concentration of the drug in plasma, which includes 
both the protein-bound and unbound (free) fractions. Notably, around 
80% of CIT is bound to plasma proteins, while the ratio for SER is be-
tween 95 and 99% (DeVane, 1999; Pollock, 2001). Moreover, because 
our system includes proteins from the fetal bovine serum, we cannot 
precisely know the availability of SSRIs to the MSCs, as we lack 
knowledge of the chemicals’ kinetics in this system. As the unbound 
fraction in our system might be less than the nominal concentrations 
added, there is a possibility that BMD values might be an underesti-
mation. Furthermore, a recent publication on physiologically based 
pharmacokinetic model for CIT estimates that levels in adipose tissue 
might be more than three times higher than in plasma (Wu et al., 2020). 
All in all, there is an uncertainty in exposure levels of the bioavailable 
fraction and further research into the model for in vitro to in vivo 
extrapolation, including chemical analysis of such pharmaceuticals in in 
vitro systems, is warranted. 

Taken together, our results strongly indicate that CIT and SER are 
able to disrupt the process of adipogenesis in vitro and pave the way for 
future research directions. To our knowledge there are no reports of 
effects on adipogenesis in vivo following CIT or SER exposures, and 
future studies should focus on the (developmental) effects of CIT and 
SER, specifically related to metabolism and associated endpoints such as 
dyslipidemia, inflammation and fibrosis in adipose tissue using more 
complex (in vivo) models, including mechanistic experiments into the 
role of LPLA2 in adipocytes. 

5. Conclusions 

In conclusion, our findings demonstrate the profound impact of CIT 
and SER on lipid metabolism within differentiating and mature adipo-
cytes in the range of steady-state plasma concentrations. These com-
pounds elicit a cascade of effects, including the disruption of 
phospholipids and lysosome homeostasis, coupled with the inhibition of 
adipogenic processes. Contrary to existing epidemiological studies that 
associate long-term treatment with these compounds with weight gain 
(Arterburn et al., 2016; Blumenthal et al., 2014; Uguz et al., 2015), our 
results paradoxically unveil a counterintuitive suppression of adipo-
genesis on the basis of gene expression. Nevertheless, the systemic 
consequence of these effects is complex and difficult to predict, yet our 
data strongly suggest potential implications for the maintenance of a 
physiologically balanced metabolism. While it is warranted to conduct 
further investigations to ascertain the translatability of these effects to in 
vivo scenarios, our results underscore the need for heightened caution 
when employing these pharmaceuticals, particularly during pregnancy. 
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